Constancy of the relative biological effectiveness of 42 MeV (p->Be+) neutrons among cell lines with different DNA repair proficiencies

被引:25
作者
Britten, RA
Murray, D
机构
[1] UNIV ALBERTA,DEPT ONCOL,DIV EXPT ONCOL,EDMONTON,AB T6G 1Z2,CANADA
[2] UNIV TEXAS,MD ANDERSON CANC CTR,DEPT EXPT RADIOTHERAPY,HOUSTON,TX 77030
关键词
D O I
10.2307/3579515
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
An important approach to understanding the role of the various DNA repair pathways in the cellular response to DNA-damaging agents is through the study of repair-deficient mutant cell lines, In the present study we used this strategy to assess the relative importance of four of these pathways for the repair of DNA damage induced by low-linear energy transfer (LET) gamma rays and intermediate-LET 42 MeV (p-->Be+) fast neutrons. The panel of hamster cell mutants that we characterized for their relative sensitivity to fast neutrons and gamma rays includes cell lines with defects in the nucleotide excision repair pathway; these can be further subdivided into mutants which are defective in nucleotide excision repair alone [UV5 (ERCC2(-)), UV24 (ERCC3(-)), UV135 (ERCC5(-)) and UV61 (ERCC6(-))] compared to those which have an associated defect in the distinct but overlapping pathway for the repair of DNA crosslinks [UV20 (ERCC1(-)) and UV41 (ERCC4(-))]. We also examined mutants with defects in the base excision repair pathway [EM9 (XRCC1(-))] and the DNA-dependent protein kinase (DNA-PK)-mediated DNA double-strand break (DSB) repair pathway [xrs5 (XRCC5(-))]. None of the mutants defective in nucleotide excision repair was differentially sensitized to fast neutrons or gamma rays; in fact, the slight radiosensitivity of these mutants under aerated conditions may be secondary to their defect in nucleotide excision repair, In contrast, deficiency in the base excision repair pathway resulted in a significant primary sensitization to both types of radiation (1.95-fold to gamma rays and 1.79-fold to neutrons). Deficiency in the DSB repair pathway mediated by DNA-PK resulted in a marked, but again similar, primary sensitization to gamma rays (4.2-fold) and neutrons (5.1-fold), Thus none of the repair pathways examined here exhibited a preferential role for the repair of damage induced by low-LET compared to intermediate-LET radiations; this resulted in an essentially constant relative biological effectiveness (RBE) of similar to 2 among the cell lines studied, independent of their DNA repair proficiency, However, consideration of these data along with data published previously for high-LET alpha particles suggests that, whereas the DNA-PK pathway is important for the repair of DSBs induced by low- and intermediate-LET radiations, it becomes less important as the LET increases beyond 100 keV/mu m; thus this pathway may not be involved in repairing the more complex lesions induced by densely ionizing high-LET particles. (C) 1997 by Radiation Research Society.
引用
收藏
页码:308 / 316
页数:9
相关论文
共 56 条
[1]  
Anderson Carl W., 1994, Seminars in Cell Biology, V5, P427, DOI 10.1006/scel.1994.1050
[2]  
BACHINSKI LL, 1993, AM J HUM GENET, V52, P375
[3]  
BARENDSEN G.W., 1968, CURR TOP RADIAL RES, V4, P293
[4]   DIFFERENCES IN RADIOSENSITIVITY OF CELLS FROM VARIOUS TYPES OF EXPERIMENTAL-TUMORS IN RELATION TO RBE OF 15 MEV NEUTRONS [J].
BARENDSEN, GW ;
BROERSE, JJ .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1977, 3 :211-214
[5]   THE RELATIONSHIPS BETWEEN RBE AND LET FOR DIFFERENT TYPES OF LETHAL DAMAGE IN MAMMALIAN-CELLS - BIOPHYSICAL AND MOLECULAR MECHANISMS [J].
BARENDSEN, GW .
RADIATION RESEARCH, 1994, 139 (03) :257-270
[6]   THE INHERENT CELLULAR-SENSITIVITY TO 62-BULLET-5 MEV (P-]BE+) NEUTRONS OF HUMAN-CELLS DIFFERING IN PHOTON SENSITIVITY [J].
BRITTEN, RA ;
WARENIUS, HM ;
PARKINS, C ;
PEACOCK, JH .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 1992, 61 (06) :805-812
[7]   THE DIFFERENTIAL INDUCTION OF COLLATERAL RESISTANCE TO 62.5-MEV (P-]BE+) NEUTRONS AND 4-MEV PHOTONS BY EXPOSURE TO CISPLATINUM [J].
BRITTEN, RA ;
WARENIUS, HM ;
MASTERS, JRW ;
PEACOCK, JH ;
BIOL, CI .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1993, 26 (05) :837-843
[8]   Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells [J].
Caldecott, KW ;
Tucker, JD ;
Stanker, LH ;
Thompson, LH .
NUCLEIC ACIDS RESEARCH, 1995, 23 (23) :4836-4843
[9]   The RBE of fast neutrons for in vitro inactivation of human tumour cells determined by the ratio of mean inactivation doses [J].
Courdi, A ;
Brassart, N ;
Herault, J ;
Mari, D ;
Chauvel, P .
ACTA ONCOLOGICA, 1996, 35 (02) :237-242
[10]   INDUCTION AND REPAIR OF DNA LESIONS IN CULTURED HUMAN-MELANOMA CELLS EXPOSED TO A NITROGEN-ION BEAM [J].
EGUCHI, K ;
INADA, T ;
YAGUCHI, M ;
SATOH, S ;
KANEKO, I .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 1987, 52 (01) :115-123