Quantum probes for universal gravity corrections

被引:3
作者
Candeloro, Alessandro [1 ]
Boschi, Cristian Degli Esposti [2 ]
Paris, Matteo G. A. [1 ,3 ]
机构
[1] Univ Milan, Quantum Technol Lab, Dipartimento Fis Aldo Pontremoli, I-20133 Milan, Italy
[2] CNR IMM, Sez Bologna, Via Gobetti 101, I-40129 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
来源
PHYSICAL REVIEW D | 2020年 / 102卷 / 05期
关键词
LENGTH;
D O I
10.1103/PhysRevD.102.056012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We address the precision of the estimation procedures for the minimum length arising from gravitational theories. In particular, we provide bounds on precision and assess the use of quantum probes to enhance the estimation performance. At first, we review the concept of minimum length and how it induces a perturbative term appearing in the Hamiltonian of any quantum system, which itself is proportional to a parameter depending on the minimum length. We then systematically study the effects of this perturbation on different state preparations and for several one-dimensional systems, and evaluate the quantum Fisher information in order to find the ultimate bounds to precision. Eventually, we investigate the role of dimensionality by analyzing the use of two-dimensional square well and harmonic oscillator systems to probe the minimal length. Our results show that quantum probes are convenient resources, providing potential enhancement in precision. Additionally, our results provide a set of guidelines to design future experiments to detect the minimum length.
引用
收藏
页数:12
相关论文
共 38 条
  • [21] HILBERT-SPACE REPRESENTATION OF THE MINIMAL LENGTH UNCERTAINTY RELATION
    KEMPF, A
    MANGANO, G
    MANN, RB
    [J]. PHYSICAL REVIEW D, 1995, 52 (02): : 1108 - 1118
  • [22] Exact solution of inflationary model with minimum length
    Kempf, Achim
    Lorenz, Larissa
    [J]. PHYSICAL REVIEW D, 2006, 74 (10)
  • [23] Lehmann Erich L, 2006, THEORY POINT ESTIMAT, DOI DOI 10.1007/0-387-22728-8_1
  • [24] THE ALGEBRAIC STRUCTURE OF THE GENERALIZED UNCERTAINTY PRINCIPLE
    MAGGIORE, M
    [J]. PHYSICS LETTERS B, 1993, 319 (1-3) : 83 - 86
  • [25] Quantum theory from quantum gravity
    Markopoulou, F
    Smolin, L
    [J]. PHYSICAL REVIEW D, 2004, 70 (12) : 124029 - 1
  • [26] Minimum-length deformed quantization of a free field on the de Sitter background and corrections to the inflaton perturbations
    Maziashvili, Michael
    [J]. PHYSICAL REVIEW D, 2012, 85 (12):
  • [27] Atomic weights of the elements 2013 (IUPAC Technical Report)
    Meija, Juris
    Coplen, Tyler B.
    Berglund, Michael
    Brand, Willi A.
    De Bievre, Paul
    Groening, Manfred
    Holden, Norman E.
    Irrgeher, Johanna
    Loss, Robert D.
    Walczyk, Thomas
    Prohaska, Thomas
    [J]. PURE AND APPLIED CHEMISTRY, 2016, 88 (03) : 265 - 291
  • [28] QUANTUM ESTIMATION FOR QUANTUM TECHNOLOGY
    Paris, Matteo G. A.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 : 125 - 137
  • [29] Parthasarathy KR, 2001, TRENDS MATH, P361
  • [30] Petz D, 2011, QTM PROB WHT NOI, V27, P261