Quantum probes for universal gravity corrections

被引:3
作者
Candeloro, Alessandro [1 ]
Boschi, Cristian Degli Esposti [2 ]
Paris, Matteo G. A. [1 ,3 ]
机构
[1] Univ Milan, Quantum Technol Lab, Dipartimento Fis Aldo Pontremoli, I-20133 Milan, Italy
[2] CNR IMM, Sez Bologna, Via Gobetti 101, I-40129 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
来源
PHYSICAL REVIEW D | 2020年 / 102卷 / 05期
关键词
LENGTH;
D O I
10.1103/PhysRevD.102.056012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We address the precision of the estimation procedures for the minimum length arising from gravitational theories. In particular, we provide bounds on precision and assess the use of quantum probes to enhance the estimation performance. At first, we review the concept of minimum length and how it induces a perturbative term appearing in the Hamiltonian of any quantum system, which itself is proportional to a parameter depending on the minimum length. We then systematically study the effects of this perturbation on different state preparations and for several one-dimensional systems, and evaluate the quantum Fisher information in order to find the ultimate bounds to precision. Eventually, we investigate the role of dimensionality by analyzing the use of two-dimensional square well and harmonic oscillator systems to probe the minimal length. Our results show that quantum probes are convenient resources, providing potential enhancement in precision. Additionally, our results provide a set of guidelines to design future experiments to detect the minimum length.
引用
收藏
页数:12
相关论文
共 38 条
  • [1] [Anonymous], 2007, Amer Mathematical Society
  • [2] Minimum length cutoff in inflation and uniqueness of the action
    Ashoorioon, A
    Kempf, A
    Mann, RB
    [J]. PHYSICAL REVIEW D, 2005, 71 (02) : 023503 - 1
  • [3] Quantum mechanics and the generalized uncertainty principle
    Bang, Jang Young
    Berger, Micheal S.
    [J]. PHYSICAL REVIEW D, 2006, 74 (12):
  • [4] Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation
    Benczik, S
    Chang, LN
    Minic, D
    Okamura, N
    Rayyan, S
    Takeuchi, T
    [J]. PHYSICAL REVIEW D, 2002, 66 (02) : 1
  • [5] Free particle wave function in light of the minimum-length deformed quantum mechanics and some of its phenomenological implications
    Berger, Micheal S.
    Maziashvili, Michael
    [J]. PHYSICAL REVIEW D, 2011, 84 (04)
  • [6] Generalized uncertainty principle and analogue of quantum gravity in optics
    Braidotti, Maria Chiara
    Musslimani, Ziad H.
    Conti, Claudio
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2017, 338 : 34 - 41
  • [7] Minimal length uncertainty relation and the hydrogen atom
    Brau, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (44): : 7691 - 7696
  • [8] Intrinsic measurement errors for the speed of light in vacuum
    Braun, Daniel
    Schneiter, Fabienne
    Fischer, Uwe R.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (17)
  • [9] Minimum length from first principles
    Calmet, X
    Graesser, ML
    Hsu, SDH
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (12): : 2195 - 2199
  • [10] Calmet X, 2004, PHYS REV LETT, V93, DOI [10.1103/PhysRevLett.93.211101, 10.1103/PhysRevLett.211101]