Locally conformally flat Lorentzian quasi-Einstein manifolds

被引:7
作者
Brozos-Vazquez, M. [1 ]
Garcia-Rio, E. [2 ]
Gavino-Fernandez, S. [2 ]
机构
[1] Univ A Coruna, Dept Math, La Coruna, Spain
[2] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2014年 / 173卷 / 02期
关键词
Quasi-Einstein; Lorentzian metrics; Locally conformally flat manifolds; PRODUCT; SPACES;
D O I
10.1007/s00605-013-0548-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that locally conformally flat quasi-Einstein manifolds are globally conformally equivalent to a space form or locally isometric to a Robertson-Walker spacetime or a -wave.
引用
收藏
页码:175 / 186
页数:12
相关论文
共 18 条
  • [1] Two-symmetric Lorentzian manifolds
    Alekseevsky, Dmitri V.
    Galaev, Anton S.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) : 2331 - 2340
  • [2] Anderson MT, 2006, CRM PROC & LECT NOTE, V40, P1
  • [3] [Anonymous], 1996, TRANSLATIONS MATH MO
  • [4] [Anonymous], 2010, RECENT ADV GEOMETRIC
  • [5] Structure of second-order symmetric Lorentzian manifolds
    Blanco, Oihane F.
    Sanchez, Miguel
    Senovilla, Jose M. M.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (02) : 595 - 634
  • [6] Some remarks on locally conformally flat static space-times -: art. no. 022501
    Brozos-Vázquez, M
    García-Río, E
    Vázquez-Lorenzo, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (02)
  • [7] Locally Conformally Flat Lorentzian Gradient Ricci Solitons
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) : 1196 - 1212
  • [8] Quasi-Einstein metrics and plane waves
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    [J]. XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 174 - 179
  • [9] Rigidity of quasi-Einstein metrics
    Case, Jeffrey
    Shu, Yu-Jen
    Wei, Guofang
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) : 93 - 100
  • [10] THE NONEXISTENCE OF QUASI-EINSTEIN METRICS
    Case, Jeffrey S.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (02) : 277 - 284