Long-range depth imaging using a single-photon detector array and non-local data fusion

被引:64
作者
Chan, Susan [1 ]
Halimi, Abderrahim [1 ]
Zhu, Feng [1 ]
Gyongy, Istvan [2 ]
Henderson, Robert K. [2 ]
Bowman, Richard [3 ]
McLaughlin, Stephen [1 ]
Buller, Gerald S. [1 ]
Leach, Jonathan [1 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Edinburgh, Inst Integrated Micro & Nano Syst, Edinburgh EH9 3JL, Midlothian, Scotland
[3] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
KILOMETER-RANGE; NOISE; DESIGN;
D O I
10.1038/s41598-019-44316-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to measure and record high-resolution depth images at long stand-off distances is important for a wide range of applications, including connected and automotive vehicles, defense and security, and agriculture and mining. In LIDAR (light detection and ranging) applications, single-photon sensitive detection is an emerging approach, offering high sensitivity to light and picosecond temporal resolution, and consequently excellent surface-to-surface resolution. The use of large format CMOS (complementary metal-oxide semiconductor) single-photon detector arrays provides high spatial resolution and allows the timing information to be acquired simultaneously across many pixels. In this work, we combine state-of-the-art single-photon detector array technology with non-local data fusion to generate high resolution three-dimensional depth information of long-range targets. The system is based on a visible pulsed illumination system at a wavelength of 670 nm and a 240 x 320 array sensor, achieving sub-centimeter precision in all three spatial dimensions at a distance of 150 meters. The non-local data fusion combines information from an optical image with sparse sampling of the single-photon array data, providing accurate depth information at low signature regions of the target.
引用
收藏
页数:10
相关论文
共 59 条
[1]  
Albota M. A., 2002, Lincoln Laboratory Journal, V13, P351
[2]  
Altantawy Doaa A., 2017, 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS). Proceedings, P43, DOI 10.1109/INTELCIS.2017.8260025
[3]   Quantum-inspired computational imaging [J].
Altmann, Yoann ;
McLaughlin, Stephen ;
Padgett, Miles J. ;
Goyal, Vivek K. ;
Hero, Alfred O. ;
Faccio, Daniele .
SCIENCE, 2018, 361 (6403) :660-+
[4]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[5]   Neural network identification of people hidden from view with a single-pixel, single-photon detector [J].
Caramazza, Piergiorgio ;
Boccolini, Alessandro ;
Buschek, Daniel ;
Hullin, Matthias ;
Higham, Catherine F. ;
Henderson, Robert ;
Murray-Smith, Roderick ;
Faccio, Daniele .
SCIENTIFIC REPORTS, 2018, 8
[6]   Non-line-of-sight tracking of people at long range [J].
Chan, Susan ;
Warburton, Ryan E. ;
Gariepy, Genevieve ;
Leach, Jonathan ;
Faccio, Daniele .
OPTICS EXPRESS, 2017, 25 (09) :10109-10117
[7]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[8]  
Dong P, 2017, LiDAR remote sensing and applications
[9]  
Dutton N.A., 2014, Proc. Symposium on VLSI Circuits, P1, DOI [DOI 10.1109/VLSIC.2014.6858428, 10.1109/VLSIC.2014.6858428]
[10]  
Feng M, 2017, REGEN MED RES, V5, DOI 10.1051/rmr/160001