Gaussian quadrature formulae on the unit circle

被引:11
作者
Daruis, L
González-Vera, P
Marcellán, F
机构
[1] Univ La Laguna, Dept Math Anal, Tenerife 38271, Canary Islands, Spain
[2] Univ Carlos III Madrid, Dept Math, Madrid, Spain
关键词
Laurent polynomials; positive measure; quadrature formula; two-point Pade approximants; rate of convergence;
D O I
10.1016/S0377-0427(01)00410-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let mu be a probability measure on [0, 2pi]. In this paper we shall be concerned with the estimation of integrals of the form I-mu(f) = (1/2pi) integral(0)(2pi) f(e(i0)) dmu(theta). For this purpose we will construct quadrature formulae which are exact in a certain linear subspace of Laurent polynomials. The zeros of Szego polynomials are chosen as nodes of the corresponding quadratures. We will study this quadrature formula in terms of error expressions and convergence, as well as, its relation with certain two-point Pade approximants for the Herglotz-Riesz transform of mu. Furthermore, a comparison with the so-called Szego quadrature formulae is presented through some illustrative numerical examples. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:159 / 183
页数:25
相关论文
共 14 条
  • [1] Akhiezer, 1965, CLASSICAL MOMENT PRO
  • [2] ALFARO M, 1997, COMPLEX METHODS APPR, P1
  • [3] Rational functions associated with double infinite sequences of complex numbers
    Camacho, M
    GonzalezVera, P
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 85 (01) : 37 - 51
  • [4] Szego polynomials and quadrature formulas on the unit circle
    Daruis, L
    González-Vera, P
    [J]. APPLIED NUMERICAL MATHEMATICS, 2001, 36 (01) : 79 - 112
  • [5] Erdelyi T., 1991, ATTI SEMIN MAT FIS, V39, P551
  • [6] FREUD G, 1971, ORTHOGONAL POLYNOMAI
  • [7] Goncharov V., 1962, Amer. Math. Soc. Transl, V19, P1
  • [8] JONES WB, 1994, INT S NUM M, V119, P325
  • [9] MOMENT THEORY, ORTHOGONAL POLYNOMIALS, QUADRATURE, AND CONTINUED FRACTIONS ASSOCIATED WITH THE UNIT-CIRCLE
    JONES, WB
    NJASTAD, O
    THRON, WJ
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1989, 21 : 113 - 152
  • [10] Krylov V.I., 2006, APPROXIMATE CALCULAT