Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator

被引:78
作者
Torres-Herrera, E. J. [1 ]
Garcia-Garcia, Antonio M. [2 ]
Santos, Lea F. [3 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Puebla, Mexico
[2] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Ctr Complex Phys, Shanghai 200240, Peoples R China
[3] Yeshiva Univ, Dept Phys, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
MANY-BODY LOCALIZATION; DECAY THEORY; SPECTRA; THERMALIZATION; ENTANGLEMENT;
D O I
10.1103/PhysRevB.97.060303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study numerically and analytically the quench dynamics of isolated many-body quantum systems. Using full random matrices from the Gaussian orthogonal ensemble, we obtain analytical expressions for the evolution of the survival probability, density imbalance, and out-of-time-ordered correlator. They are compared with numerical results for a one-dimensional-disordered model with two-body interactions and shown to bound the decay rate of this realistic system. Power-law decays are seen at intermediate times, and dips below the infinite time averages (correlation holes) occur at long times for all three quantities when the system exhibits level repulsion. The fact that these features are shared by both the random matrix and the realistic disordered model indicates that they are generic to nonintegrable interacting quantum systems out of equilibrium. Assisted by the random matrix analytical results, we propose expressions that describe extremely well the dynamics of the realistic chaotic system at different time scales.
引用
收藏
页数:5
相关论文
共 59 条
[1]   SPECTRAL AUTOCORRELATION FUNCTION IN THE STATISTICAL-THEORY OF ENERGY-LEVELS [J].
ALHASSID, Y ;
LEVINE, RD .
PHYSICAL REVIEW A, 1992, 46 (08) :4650-4653
[2]  
[Anonymous], 1945, J. Phys. USSR, DOI DOI 10.1007/978-3-642-74626-0_8
[3]   Level statistics in a Heisenberg chain with random magnetic field [J].
Avishai, Y ;
Richert, J ;
Berkovits, R .
PHYSICAL REVIEW B, 2002, 66 (05) :524161-524164
[4]   Power-law out of time order correlation functions in the SYK model [J].
Bagrets, Dmitry ;
Altland, Alexander ;
Kamenev, Alex .
NUCLEAR PHYSICS B, 2017, 921 :727-752
[5]   Probing Slow Relaxation and Many-Body Localization in Two-Dimensional Quasiperiodic Systems [J].
Bordia, Pranjal ;
Lueschen, Henrik ;
Scherg, Sebastian ;
Gopalakrishnan, Sarang ;
Knap, Michael ;
Schneider, Ulrich ;
Bloch, Immanuel .
PHYSICAL REVIEW X, 2017, 7 (04)
[6]   Quantum chaos and thermalization in isolated systems of interacting particles [J].
Borgonovi, F. ;
Izrailev, F. M. ;
Santos, L. F. ;
Zelevinsky, V. G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 626 :1-58
[7]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[8]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[9]   Black holes and random matrices [J].
Cotler, Jordan S. ;
Gur-Ari, Guy ;
Hanada, Masanori ;
Polchinski, Joseph ;
Saad, Phil ;
Shenker, Stephen H. ;
Stanford, Douglas ;
Streicher, Alexandre ;
Tezuka, Masaki .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05)
[10]   Scrambling the spectral form factor: Unitarity constraints and exact results [J].
del Campo, A. ;
Molina-Vilaplana, J. ;
Sonner, J. .
PHYSICAL REVIEW D, 2017, 95 (12)