Variation of PEM Fuel Cell Physical Parameters with Current: Impedance Spectroscopy Study

被引:35
作者
Reshetenko, Tatyana [1 ]
Kulikovsky, Andrei [2 ,3 ]
机构
[1] Univ Hawaii, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA
[2] Res Ctr Juelich, Inst Energy & Climate Res, Electrochem Proc Engn IEK 3, D-52425 Julich, Germany
[3] Moscow MV Lomonosov State Univ, Ctr Res Comp, Moscow 119991, Russia
关键词
CATHODE CATALYST LAYER; GAS-DIFFUSION ELECTRODES; MASS-TRANSPORT; MODEL; PLATINUM; PERFORMANCE; SPECTRA; FLOW; OSCILLATIONS; DEGRADATION;
D O I
10.1149/2.0981609jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Experimental impedance spectra of a segmented PEM fuel cell are fitted using a numerical impedance model based on the transient macrohomogeneous equations for the cathode side. Dependence of the cell transport and kinetic parameters on the current density is reported in the range from 50 to 400 mA cm(-2). The largest variation (growth by an order of magnitude) exhibit the cathode catalyst layer proton conductivity sp and oxygen diffusivity. Moreover, sp exhibits a stepwise change at the current density similar or equal to 200 mA cm(-2). This jump could lead to formation of current-carrying and current-free zones over the cell surface. Recent experimental data (JES, 156, B301 (2009)) show that this configuration is indeed realized in PEMFCs with the high-and low-current density zones under the channel and rib, respectively. (C) The Author(s) 2016. Published by ECS. All rights reserved.
引用
收藏
页码:F1100 / F1106
页数:7
相关论文
共 46 条
[1]   Electrochemical atomic force microscopy study of proton conductivity in a Nafion membrane [J].
Aleksandrova, Elena ;
Hiesgen, Renate ;
Friedrich, K. Andreas ;
Roduner, Emil .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (21) :2735-2743
[2]   Catalyst Durability in PEM Fuel Cells with Low Platinum Loading [J].
Arisetty, S. ;
Wang, X. ;
Ahluwalia, R. K. ;
Mukundan, R. ;
Borup, R. ;
Davey, J. ;
Langlois, D. ;
Gambini, F. ;
Polevaya, O. ;
Blanchet, S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (05) :B455-B646
[3]   Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part II. Physics-based electrochemical impedance analysis [J].
Bao, Cheng ;
Bessler, Wolfgang G. .
JOURNAL OF POWER SOURCES, 2015, 278 :675-682
[4]   Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells [J].
Bender, G ;
Wilson, MS ;
Zawodzinski, TA .
JOURNAL OF POWER SOURCES, 2003, 123 (02) :163-171
[5]   Investigation of mass transport in gas diffusion layer at the air cathode of a PEMFC [J].
Bultel, Y ;
Wiezell, K ;
Jaouen, F ;
Ozil, P ;
Lindbergh, G .
ELECTROCHIMICA ACTA, 2005, 51 (03) :474-488
[6]   Modeling impedance diagrams of active layers in gas diffusion electrodes: diffusion, ohmic drop effects and multistep reactions [J].
Bultel, Y ;
Genies, L ;
Antoine, O ;
Ozil, P ;
Durand, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 527 (1-2) :143-155
[7]   Investigation of Proton Transport in the Catalyst Layer of PEM Fuel Cells by Electrochemical Impedance Spectroscopy [J].
Cimenti, M. ;
Bessarabov, D. ;
Tam, M. ;
Stumper, J. .
ELECTRODE PROCESSES RELEVANT TO FUEL CELL TECHNOLOGY, 2010, 28 (23) :147-157
[8]   A printed circuit board approach to measuring current distribution in a fuel cell [J].
Cleghorn, SJC ;
Derouin, CR ;
Wilson, MS ;
Gottesfeld, S .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1998, 28 (07) :663-672
[9]   A multi-scale dynamic mechanistic model for the transient analysis of PEFCs [J].
Franco, A. A. ;
Schott, P. ;
Jallut, C. ;
Maschke, B. .
FUEL CELLS, 2007, 7 (02) :99-117
[10]   Measuring the current distribution in PEFCs with sub-millimeter resolution [J].
Freunberger, Stefan A. ;
Reum, Mathias ;
Evertz, Jorg ;
Wokaun, Alexander ;
Buechi, Felix N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (11) :A2158-A2165