Scaling Properties of Charge Transport in Polycrystalline Graphene

被引:94
作者
Dinh Van tuan [1 ,2 ]
Kotakoski, Jani [3 ,4 ]
Louvet, Thibaud [1 ,2 ,5 ]
Ortmann, Frank [1 ,2 ]
Meyer, Jannik C. [3 ]
Roche, Stephan [1 ,2 ,6 ]
机构
[1] CIN2 ICN CSIC, Catalan Inst Nanotechnol, Bellaterra 08193, Spain
[2] Univ Autonoma Barcelona, Bellaterra 08193, Spain
[3] Univ Vienna, Dept Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
[4] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland
[5] Ecole Normale Super Lyon, F-69007 Lyon, France
[6] ICREA, Barcelona 08070, Spain
基金
奥地利科学基金会;
关键词
Polycrystalline graphene; grain boundaries; charge transport; mobility; GRAIN-BOUNDARIES; QUANTUM TRANSPORT; LARGE-AREA; FILMS; ELECTRON;
D O I
10.1021/nl400321r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polycrystalline graphene is a patchwork of coalescing graphene grains of varying lattice orientations and size, resulting from the chemical vapor deposition (CVD) growth at random nucleation sites on metallic substrates. The morphology of grain boundaries has become an important topic given its fundamental role in limiting the mobility of charge carriers in polycrystalline graphene, as compared to mechanically exfoliated samples. Here we report new insights to the current understanding of charge transport in polycrystalline geometries. We created realistic models of large CVD-grown graphene samples and then computed the corresponding charge carrier mobilities as a function of the average grain size and the coalescence quality between the grains. Our results reveal a remarkably simple scaling law for the mean free path and conductivity, correlated to atomic-scale charge density fluctuations along grain boundaries.
引用
收藏
页码:1730 / 1735
页数:6
相关论文
共 33 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[4]  
Cervenka J., 2007, NATURE PHYS, V5, P840
[5]   Anderson transitions [J].
Evers, Ferdinand ;
Mirlin, Alexander D. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1355-1417
[6]   Transport properties of graphene with one-dimensional charge defects [J].
Ferreira, Aires ;
Xu, Xiangfan ;
Tan, Chang-Lin ;
Bae, Su-Kang ;
Peres, N. M. R. ;
Hong, Byung-Hee ;
Oezyilmaz, Barbaros ;
Castro Neto, A. H. .
EPL, 2011, 94 (02)
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene [J].
Grantab, Rassin ;
Shenoy, Vivek B. ;
Ruoff, Rodney S. .
SCIENCE, 2010, 330 (6006) :946-948
[9]   Grains and grain boundaries in single-layer graphene atomic patchwork quilts [J].
Huang, Pinshane Y. ;
Ruiz-Vargas, Carlos S. ;
van der Zande, Arend M. ;
Whitney, William S. ;
Levendorf, Mark P. ;
Kevek, Joshua W. ;
Garg, Shivank ;
Alden, Jonathan S. ;
Hustedt, Caleb J. ;
Zhu, Ye ;
Park, Jiwoong ;
McEuen, Paul L. ;
Muller, David A. .
NATURE, 2011, 469 (7330) :389-+
[10]   Density dependent exchange contribution to partial derivativeμ/partial derivativen and compressibility in graphene [J].
Hwang, E. H. ;
Hu, Ben Yu-Kuang ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2007, 99 (22)