Every smooth p-adic Lie group admits a compatible analytic structure

被引:6
作者
Glöckner, H [1 ]
机构
[1] TU Darmstadt, FB Math AG 5, D-64289 Darmstadt, Germany
关键词
D O I
10.1515/FORUM.2006.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every finite-dimensional p-adic Lie group of class C-k (where k is an element of N boolean OR {infinity}) admits a C-k-compatible analytic Lie group structure. We also construct an exponential map for every k + 1 times strictly differentiable (SCk+1) ultrametric p-adic Banach-Lie group, which is an SC1-diffeomorphism and admits Taylor expansions of all finite orders <= k.
引用
收藏
页码:45 / 84
页数:40
相关论文
共 26 条
[1]  
[Anonymous], 1933, CONTINUOUS GROUPS TR
[2]  
[Anonymous], 1987, Topological vector classes, DOI DOI 10.1007/978-3-642-61715-7
[3]   Differential calculus over general base fields and rings [J].
Bertram, W ;
Glöckner, H ;
Neeb, KH .
EXPOSITIONES MATHEMATICAE, 2004, 22 (03) :213-282
[4]  
BERTRAM W, 1932, DIFFERENTIAL GEOMETR
[5]   Analytical groups [J].
Birkhoff, Garrett .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :61-101
[6]   POLYNOMIALS AND MULTILINEAR MAPPINGS IN TOPOLOGICAL VECTOR SPACES [J].
BOCHNAK, J ;
SICIAK, J .
STUDIA MATHEMATICA, 1971, 39 (01) :59-&
[7]  
BOURBAKI N, 1967, VARIETES DIFFERENTIA
[8]  
Bourbaki N., 1989, LIE GROUPS LIE ALGEB
[9]  
Dixon J.D., 1999, ANAL PROP GROUPS
[10]  
Engelking R., 1989, General Topology, V2