IMPROVEMENTS OF UPPER CURVATURE BOUNDS

被引:9
作者
Lytchak, Alexander [1 ]
Stadler, Stephan [2 ]
机构
[1] Univ Cologne, Mathemat Inst, Weyertal 86-90, D-50931 Cologne, Germany
[2] Univ Munich, Mathemat Inst, Theresienstr 39, D-80333 Munich, Germany
关键词
Non-positive curvature; conformal change; minimal disc; harmonic maps; GRADIENT FLOWS; HARMONIC MAPS; RIEMANNIAN POLYHEDRA; CONVEX-FUNCTIONS; LOCAL-STRUCTURE; SPACES;
D O I
10.1090/tran/8123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that upper curvature bounds in the sense of Alexandrov can be improved locally by using appropriate conformal changes. As a new technical tool we derive a generalization to metric spaces and semi-convex functions of the classical differential geometric property that compositions of harmonic maps with convex functions are subharmonic.
引用
收藏
页码:7153 / 7166
页数:14
相关论文
共 35 条
[1]  
Alexander S., 2016, PREPRINT
[2]   Curvature bounds for warped products of metric spaces [J].
Alexander, SB ;
Bishop, RL .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (06) :1143-1181
[3]  
AMBROSIO L., 2005, LECT MATH ETH ZURICH
[4]  
Ballmann W., 2004, GEOMETRY METRIC SPAC
[5]  
BERESTOVSKII VN, 1983, DOKL AKAD NAUK SSSR+, V268, P273
[6]   Regularity of harmonic maps from polyhedra to CAT(1) spaces [J].
Breiner, Christine ;
Fraser, Ailana ;
Huang, Lan-Hsuan ;
Mese, Chikako ;
Sargent, Pam ;
Zhang, Yingying .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (01)
[7]   ON ENERGY MINIMIZING MAPPINGS BETWEEN AND INTO SINGULAR SPACES [J].
CHEN, JY .
DUKE MATHEMATICAL JOURNAL, 1995, 79 (01) :77-99
[8]  
Daskalopoulos G, 2010, COMMUN ANAL GEOM, V18, P257
[9]   The Dirichlet problem for harmonic maps from Riemannian polyhedra to spaces of upper bounded curvature [J].
Fuglede, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (02) :757-792
[10]   Harmonic maps from Riemannian polyhedra to geodesic spaces with curvature bounded from above [J].
Fuglede, Bent .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 31 (01) :99-136