Multi-Imbalance: An open-source software for multi-class imbalance learning

被引:138
作者
Zhang, Chongsheng [1 ]
Bi, Jingjun [1 ]
Xu, Shixin [1 ]
Ramentol, Enislay [2 ]
Fan, Gaojuan [1 ]
Qiao, Baojun [1 ]
Fujita, Hamido [3 ,4 ]
机构
[1] Henan Univ, Big Data Res Ctr, Kaifeng 475001, Peoples R China
[2] SICS Swedish ICT, Isafjordsgatan 22,Box 1263, SE-16429 Kista, Sweden
[3] Ho Chi Minh City Univ Technol HUTECH, Fac Informat Technol, Ho Chi Minh City, Vietnam
[4] Iwate Prefectural Univ, Fac Software & Informat Sci, Takizawa, Iwate 0200693, Japan
关键词
Multi-class imbalance leaning; Imbalanced data classification; PARAMETERIZATION; CLASSIFICATION; DOMAIN;
D O I
10.1016/j.knosys.2019.03.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Imbalance classification is one of the most challenging research problems in machine learning. Techniques for two-class imbalance classification are relatively mature nowadays, yet multi-class imbalance learning is still an open problem. Moreover, the community lacks a suitable software tool that can integrate the major works in the field. In this paper, we present Multi-Imbalance, an open source software package for multi-class imbalanced data classification. It provides users with seven different categories of multi-class imbalance learning algorithms, including the latest advances in the field. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 143
页数:7
相关论文
共 38 条
[1]   To Combat Multi-Class Imbalanced Problems by Means of Over-Sampling Techniques [J].
Abdi, Lida ;
Hashemi, Sattar .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (01) :238-251
[2]   KEEL: a software tool to assess evolutionary algorithms for data mining problems [J].
Alcala-Fdez, J. ;
Sanchez, L. ;
Garcia, S. ;
del Jesus, M. J. ;
Ventura, S. ;
Garrell, J. M. ;
Otero, J. ;
Romero, C. ;
Bacardit, J. ;
Rivas, V. M. ;
Fernandez, J. C. ;
Herrera, F. .
SOFT COMPUTING, 2009, 13 (03) :307-318
[3]  
[Anonymous], 2010, P INT JOINT C NEUR N
[4]  
[Anonymous], 2016, KNOWL BASED SYST
[5]   An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme [J].
Bi, Jingjun ;
Zhang, Chongsheng .
KNOWLEDGE-BASED SYSTEMS, 2018, 158 :81-93
[6]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[7]   An empirical study of a hybrid imbalanced-class DT-RST classification procedure to elucidate therapeutic effects in uremia patients [J].
Chen, You-Shyang .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2016, 54 (06) :983-1001
[8]  
Dietterich T., 1994, ERROR CORRECTING OUT, P395
[9]   Adaptive fraud detection [J].
Fawcett, T ;
Provost, F .
DATA MINING AND KNOWLEDGE DISCOVERY, 1997, 1 (03) :291-316
[10]   Multi-class boosting with asymmetric binary weak-learners [J].
Fernandez-Baldera, Antonio ;
Baumela, Luis .
PATTERN RECOGNITION, 2014, 47 (05) :2080-2090