An Erdos-R,v,sz Type Law of the Iterated Logarithm for Order Statistics of a Stationary Gaussian Process

被引:4
作者
Debicki, K. [1 ]
Kosinski, K. M. [1 ]
机构
[1] Univ Wroclaw, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
关键词
Extremes of Gaussian processes; Order statistics process; Law of the iterated logarithm; EXTREMES;
D O I
10.1007/s10959-016-0710-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let be a stationary Gaussian process with almost surely (a.s.) continuous sample paths, and correlation function satisfying (i) as for some and ; (ii) for each and (iii) as for some . For any , consider n mutually independent copies of X and denote by the rth smallest order statistics process, . We provide a tractable criterion for assessing whether, for any positive, non-decreasing function equals 0 or 1. Using this criterion we find, for a family of functions such that , that . Consequently, with , for we have and a.s. Complementarily, we prove an Erdos-R,v,sz type law of the iterated logarithm lower bound on , namely, that a.s. for and a.s. for , where h p( t) = ( 1/ z p( t)) p log log t..
引用
收藏
页码:579 / 597
页数:19
相关论文
共 14 条
[1]  
De bicki K., 2016, ARXIV150309094V1
[2]   Extremes of vector-valued Gaussian processes: Exact asymptotics [J].
Debicki, Krzysztof ;
Hashorva, Enkelejd ;
Ji, Lanpeng ;
Tabis, Kamil .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) :4039-4065
[3]   Extremes of order statistics of stationary processes [J].
Debicki, Krzysztof ;
Hashorva, Enkelejd ;
Ji, Lanpeng ;
Ling, Chengxiu .
TEST, 2015, 24 (02) :229-248
[4]   On the probability of conjunctions of stationary Gaussian processes [J].
Debicki, Krzysztof ;
Hashorva, Enkelejd ;
Ji, Lanpeng ;
Tabis, Kamil .
STATISTICS & PROBABILITY LETTERS, 2014, 88 :141-148
[5]   Asymptotic expansion of Gaussian chaos via probabilistic approach [J].
Hashorva, Enkelejd ;
Korshunov, Dmitry ;
Piterbarg, Vladimir I. .
EXTREMES, 2015, 18 (03) :315-347
[6]   On the supremum of γ-reflected processes with fractional Brownian motion as input [J].
Hashorva, Enkelejd ;
Ji, Lanpeng ;
Piterbarg, Vladimir I. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) :4111-4127
[7]  
Leadbetter R.M., 1983, EXTREMES RELATED PRO, DOI 10.1007/978-1-4612-5449-2
[9]  
Piterbarg V. I., 1996, TRANSLATIONS MATH MO, V148
[10]  
Piterbarg V.I., 1978, TEOR VEROYATNOST MAT, V18, P121