Localization plays a key role for safe operation of UAVs enabling beyond visual line of sight applications. Compared to GPS based localization, cellular networks can reduce the positioning error and cost since cellular connectivity is becoming a prominent solution as a communication system for UAVs. As a first step towards localization, UAV needs to receive sufficient number of localization signals each having a signal to interference plus noise ratio (SINR) greater than a threshold. On the other hand, three-dimensional mobility of UAVs, altitude dependent channel characteristics between base stations (BSs) and UAVs, its line of sight and non-line of sight conditions, and resulting interference from the neighboring BSs pose challenges to receive usable signals from the required number of BSs. In this paper, we utilize a tractable approach to calculate localizability probability, which is defined as the probability of successfully receiving usable signals from at least a certain number of BSs. Localizability has an impact on overall localization performance regardless of the localization technique to be used. In our simulation study, we investigate the relation between the localizability probability with respect to the number of participating BSs, post-processing SINR requirement, air-to-ground channel characteristics, and network coordination, which are shown to be the most important factors for the localizability performance of UAVs. We observe the localizability performance is better at higher altitudes which indicates that localizability with cellular networks for UAVs is more favorable than for terrestrial users.