FROM A SYSTEMS THEORY OF SOCIOLOGY TO MODELING THE ONSET AND EVOLUTION OF CRIMINALITY

被引:38
作者
Bellomo, Nicola [1 ,2 ]
Colasuonno, Francesca [3 ]
Knopoff, Damian [4 ]
Soler, Juan [5 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Politecn Torino, I-10129 Turin, Italy
[3] Politecn Torino, Dept Math Sci, I-10129 Turin, Italy
[4] Ctr Invest & Estudios Matemat CONICET, RA-5000 Cordoba, Argentina
[5] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Kinetic theory; active particles; stochastic games; system theory sociology; social systems; criminality; MATHEMATICAL-THEORY; COMPLEX-SYSTEMS; DYNAMICS; EXISTENCE; NETWORKS;
D O I
10.3934/nhm.2015.10.421
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a systems theory approach to the modeling of onset and evolution of criminality in a territory. This approach aims at capturing the complexity features of social systems. Complexity is related to the fact that individuals have the ability to develop specific heterogeneously distributed strategies, which depend also on those expressed by the other individuals. The modeling is developed by methods of generalized kinetic theory where interactions and decisional processes are modeled by theoretical tools of stochastic game theory.
引用
收藏
页码:421 / 441
页数:21
相关论文
共 47 条
[1]  
[Anonymous], SOCIOLOGY NEW SYSTEM
[2]   On a class of integro-differential equations modeling complex systems with nonlinear interactions [J].
Arlotti, L. ;
De Angelis, E. ;
Fermo, L. ;
Lachowicz, M. ;
Bellomo, N. .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :490-495
[3]  
Arthur W. B., 1997, STUDIES SCI COMPLEXI
[4]  
Ball P., 2012, WHY SOC COMPLEX MATT
[5]   Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study [J].
Ballerini, M. ;
Calbibbo, N. ;
Candeleir, R. ;
Cavagna, A. ;
Cisbani, E. ;
Giardina, I. ;
Lecomte, V. ;
Orlandi, A. ;
Parisi, G. ;
Procaccini, A. ;
Viale, M. ;
Zdravkovic, V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) :1232-1237
[6]   Multicellular biological growing systems: Hyperbolic limits towards macroscopic description [J].
Bellomo, N. ;
Bellouquid, A. ;
Nieto, J. ;
Soler, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (01) :1675-1692
[7]   ON THE DIFFICULT INTERPLAY BETWEEN LIFE, "COMPLEXITY", AND MATHEMATICAL SCIENCES [J].
Bellomo, N. ;
Knopoff, D. ;
Soler, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (10) :1861-1913
[8]   ON THE MATHEMATICAL THEORY OF THE DYNAMICS OF SWARMS VIEWED AS COMPLEX SYSTEMS [J].
Bellomo, N. ;
Soler, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22
[9]  
Bellomo N., 2000, MODELING APPL SCI KI
[10]   ON THE DYNAMICS OF SOCIAL CONFLICTS: LOOKING FOR THE BLACK SWAN [J].
Bellomo, Nicola ;
Herrero, Miguel A. ;
Tosin, Andrea .
KINETIC AND RELATED MODELS, 2013, 6 (03) :459-479