Parameter Estimation in Food Science

被引:65
作者
Dolan, Kirk D. [1 ,2 ]
Mishra, Dharmendra K. [2 ,3 ]
机构
[1] Michigan State Univ, Dept Food Sci & Nutr, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Biolsyst & Agr Engn, E Lansing, MI 48824 USA
[3] Nestl Nutr, Fremont, MI 49412 USA
来源
ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY, VOL 4 | 2013年 / 4卷
关键词
scaled sensitivity coefficients; inverse problem; forward problem; standard statistical assumptions; nonisothermal; sequential; MICROBIAL SURVIVAL PARAMETERS; PREDICTING HEAT INACTIVATION; OPTIMAL EXPERIMENTAL-DESIGN; ASCORBIC-ACID DEGRADATION; DIFFUSIVE DRYING KINETICS; LISTERIA-MONOCYTOGENES; THERMAL INACTIVATION; BACTERIAL-GROWTH; ESCHERICHIA-COLI; NONISOTHERMAL INACTIVATION;
D O I
10.1146/annurev-food-022811-101247
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Modeling includes two distinct parts, the forward problem and the inverse problem. The forward problem-computing y(t) given known parameters-has received much attention, especially with the explosion of commercial simulation software. What is rarely made clear is that the forward results can be no better than the accuracy of the parameters. Therefore, the inverse problem-estimation of parameters given measured y(t)-is at least as important as the forward problem. However, in the food science literature there has been little attention paid to the accuracy of parameters. The purpose of this article is to summarize the state of the art of parameter estimation in food science, to review some of the common food science models used for parameter estimation (for microbial inactivation and growth, thermal properties, and kinetics), and to suggest a generic method to standardize parameter estimation, thereby making research results more useful. Scaled sensitivity coefficients are introduced and shown to be important in parameter identifiability. Sequential estimation and optimal experimental design are also reviewed as powerful parameter estimation methods that are beginning to be used in the food science literature.
引用
收藏
页码:401 / 422
页数:22
相关论文
共 108 条
[1]  
Ahmed J., 2012, Handbook of food process design, P113
[2]  
[Anonymous], 2013, Parameter estimation and inverse problems, DOI DOI 10.1016/C2009-0-61134-X
[3]   Evaluation of the Weibull and log normal distribution functions as survival models of Escherichia coli under isothermal and non isothermal conditions [J].
Aragao, Glaucia M. F. ;
Corradini, Maria G. ;
Nonmand, Mark D. ;
Peleg, Micha .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2007, 119 (03) :243-257
[4]   Improving food processing using modern optimization methods [J].
Banga, JR ;
Balsa-Canto, E ;
Moles, CG ;
Alonso, AA .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2003, 14 (04) :131-144
[5]   A DYNAMIC APPROACH TO PREDICTING BACTERIAL-GROWTH IN FOOD [J].
BARANYI, J ;
ROBERTS, TA .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 1994, 23 (3-4) :277-294
[6]  
Bates D. M., 1988, NONLINEAR REGRESSION, DOI DOI 10.1002/9780470316757
[7]  
Beck J. V., 2007, PARAMETER ESTIMATION
[8]  
Beck J.V., 1977, Parameter estimation in engineering and science
[9]  
Beck J.V., 1985, Inverse Heat Conduction: Ill-Posed Problems
[10]   Inverse problems and parameter estimation: integration of measurements and analysis [J].
Beck, JV ;
Woodbury, KA .
MEASUREMENT SCIENCE AND TECHNOLOGY, 1998, 9 (06) :839-847