An End-to-End Deep Learning Pipeline for Emphysema Quantification Using Multi-label Learning

被引:0
|
作者
Negahdar, Mohammadreza [1 ]
Coy, Adam [2 ]
Beymer, David [1 ]
机构
[1] IBM Res Almaden, San Jose, CA 95120 USA
[2] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
关键词
INTERSTITIAL LUNG-DISEASES; CT; CANCER;
D O I
10.1109/embc.2019.8857392
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose and validate an end-to-end deep learning pipeline employing multi-label learning as a tool for creating differential diagnoses of lung pathology as well as quantifying the extent and distribution of emphysema in chest CT images. The proposed pipeline first employs deep learning based volumetric lung segmentation using a 3D CNN to extract the entire lung out of CT images. Then, a multi-label learning model is exploited for the classification creation differential diagnoses for emphysema and then used to correlate with the emphysema diagnosed by radiologists. The five lung tissue patterns which are involved in most lung disease differential diagnoses were classified as: ground glass, fibrosis, micronodules (random, perilymphatic and centrilobular lung nodules), normal appearing lung, and emphysematous lung tissue. To the best of our knowledge, this is the first end-to-end deep learning pipeline for the creation of differential diagnoses for lung disease and the quantification of emphysema. A comparative analysis shows the performance of the proposed pipeline on two publicly available datasets.
引用
收藏
页码:929 / 932
页数:4
相关论文
共 50 条
  • [41] An Analytic End-to-End Collaborative Deep Learning Algorithm
    Li, Sitan
    Cheah, Chien Chern
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3024 - 3029
  • [42] An End-to-End Deep Learning Architecture for Graph Classification
    Zhang, Muhan
    Cui, Zhicheng
    Neumann, Marion
    Chen, Yixin
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4438 - 4445
  • [43] End-to-end waveform level receiver with deep learning
    Zhu, Zhaorui
    Yu, Hongyi
    Shen, Caiyao
    IET COMMUNICATIONS, 2022, 16 (11) : 1315 - 1324
  • [44] MINTZAI: End-to-end Deep Learning for Speech Translation
    Etchegoyhen, Thierry
    Arzelus, Haritz
    Gete, Harritxu
    Alvarez, Aitor
    Hernaez, Inma
    Navas, Eva
    Gonzalez-Docasal, Ander
    Osacar, Jaime
    Benites, Edson
    Ellakuria, Igor
    Calonge, Eusebi
    Martin, Maite
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2020, (65): : 97 - 100
  • [45] An End-to-End Detection Method for WebShell with Deep Learning
    Qi, Longchen
    Kong, Rui
    Lu, Yang
    Zhuang, Honglin
    2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018), 2018, : 660 - 665
  • [46] End-to-End Deep Learning for Driver Distraction Recognition
    Koesdwiady, Arief
    Bedawi, Safaa M.
    Ou, Chaojie
    Karray, Fakhri
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 11 - 18
  • [47] End-to-end Multimodel Deep Learning for Malware Classification
    Snow, Elijah
    Alam, Mahbubul
    Glandon, Alexander
    Iftekharuddin, Khan
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [48] Detecting web attacks with end-to-end deep learning
    Pan, Yao
    Sun, Fangzhou
    Teng, Zhongwei
    White, Jules
    Schmidt, Douglas C.
    Staples, Jacob
    Krause, Lee
    JOURNAL OF INTERNET SERVICES AND APPLICATIONS, 2019, 10 (01)
  • [49] End-to-End Deep Learning of Optical Fiber Communications
    Karanov, Boris
    Chagnon, Mathieu
    Thouin, Felix
    Eriksson, Tobias A.
    Buelow, Henning
    Lavery, Domanic
    Bayvel, Polina
    Schmalen, Laurent
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (20) : 4843 - 4855
  • [50] End-to-End Learning for the Deep Multivariate Probit Model
    Chen, Di
    Xue, Yexiang
    Gomes, Carla
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80