Matrix-Based Ramanujan-Sums Transforms

被引:7
作者
Chen, Guangyi [1 ,2 ]
Krishnan, Sridhar [1 ]
Bui, Tien D. [2 ]
机构
[1] Ryerson Univ, Dept Elect & Comp Engn, Toronto, ON M5B 2K3, Canada
[2] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fourier transform (FT); Gaussian white noise; Ramanujan Sums (RS);
D O I
10.1109/LSP.2013.2273973
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we study the Ramanujan Sums (RS) transform by means of matrix multiplication. The RS are orthogonal in nature and therefore offer excellent energy conservation capability. The 1-D and 2-D forward RS transforms are easy to calculate, but their inverse transforms are not defined in the literature for non-even function (mod M). We solved this problem by using matrix multiplication in this letter.
引用
收藏
页码:941 / 944
页数:4
相关论文
共 13 条
  • [1] Apostol T. M., 1972, PACIFIC J MATH, V41
  • [2] Chen G. Y., 2013, P 9 INT C INT COMP I
  • [3] Chen G. Y., 2013, P INT C WAV AN PATT
  • [4] Chen G. Y., INT J WAVEL IN PRESS
  • [5] Haukkanen P., 2007, INDIAN J MATH MATH S, V3, P75
  • [6] On a general form of meet matrices associated with incidence functions
    Korkee, I
    Haukkanen, P
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (05) : 309 - 321
  • [7] Mainardi LT, 2007, METHOD INFORM MED, V46, P126
  • [8] Analysis of T-Wave Alternans Using the Ramanujan Transform
    Mainardi, L. T.
    Bertinelli, M.
    Sassi, R.
    [J]. COMPUTERS IN CARDIOLOGY 2008, VOLS 1 AND 2, 2008, : 605 - +
  • [9] A GENERALIZATION OF SMITHS DETERMINANT
    MCCARTHY, PJ
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1986, 29 (01): : 109 - 113
  • [10] Ramanujan sums for signal processing of low-frequency noise
    Planat, M
    Rosu, H
    Perrine, S
    [J]. PHYSICAL REVIEW E, 2002, 66 (05): : 7