Impartial coloring games

被引:5
作者
Beaulieu, G. [1 ]
Burke, K. [2 ]
Duchene, E. [3 ]
机构
[1] Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada
[2] Wittenberg Univ, Springfield, OH 45503 USA
[3] Univ Lyon 1, LIRIS Lab, F-69622 Villeurbanne, France
关键词
Combinatorial games; Sprague-Grundy function; Graph coloring; KAYLES;
D O I
10.1016/j.tcs.2013.02.032
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Coloring games are combinatorial games where the players alternate painting uncolored vertices of a graph one of k > 0 colors. Each different ruleset specifies that game's coloring constraints. This paper investigates six impartial rulesets (five new), derived from previously-studied graph coloring schemes, including proper map coloring, oriented coloring, 2-distance coloring, weak coloring, and sequential coloring. For each, we study the outcome classes for special cases and general computational complexity. In some cases we pay special attention to the Grundy function. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 60
页数:12
相关论文
共 18 条
[1]   The map-coloring game [J].
Bartnicki, Tomasz ;
Grytczuk, Jaroslaw ;
Kierstead, H. A. ;
Zhu, Xuding .
AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (09) :793-803
[2]  
Berlekamp ER, 1982, WINNING WAYS YOUR MA, VII
[3]  
Bodlaender H. L., 1991, International Journal of Foundations of Computer Science, V2, P133, DOI 10.1142/S0129054191000091
[4]   Kayles and nimbers [J].
Bodlaender, HL ;
Kratsch, D .
JOURNAL OF ALGORITHMS, 2002, 43 (01) :106-119
[5]  
BODLAENDER HL, 2011, EXACT ALGORITHMS KAY, V6986, P59, DOI DOI 10.1007/978-3-642-25870-1_7
[6]   Nim, a game with a complete mathematical theory. [J].
Bouton, CL .
ANNALS OF MATHEMATICS, 1901, 3 :35-39
[7]  
Chew K. H., 1999, AUSTR MATH SOC A, VA53, P219
[8]  
Demaine ED, 2001, LECT NOTES COMPUT SC, V2136, P18
[9]   A bound for the game chromatic number of graphs [J].
Dinski, T ;
Zhu, XD .
DISCRETE MATHEMATICS, 1999, 196 (1-3) :109-115
[10]   Acyclic and k-distance coloring of the grid [J].
Fertin, G ;
Godard, E ;
Raspaud, A .
INFORMATION PROCESSING LETTERS, 2003, 87 (01) :51-58