Graphene/Li-ion battery

被引:51
|
作者
Kheirabadi, Narjes [1 ]
Shafiekhani, Azizollah [2 ,3 ]
机构
[1] IAU, No Tehran Branch, Dept Phys, Tehran 1667934783, Iran
[2] Alzahra Univ, Dept Phys, Tehran 1993893973, Iran
[3] Inst Res Fundamental Sci IPM, Sch Phys, Tehran, Iran
关键词
LITHIUM STORAGE; LI IONS; GRAPHITE; CARBON; CAPACITY; MECHANISM; INSERTION; ANODES; STATES;
D O I
10.1063/1.4771923
中图分类号
O59 [应用物理学];
学科分类号
摘要
Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy, spin polarization, charge distribution, electronic gap, surface curvature, and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene, doped by one Li atom is spin polarized, so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable, because it could improve graphene Li-ion batteries; consequently, the most proper graphene anode structure has been proposed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771923]
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Adsorptions of lithium ion/atom and packing of Li ions on graphene quantum dots: Application for Li-ion battery
    Pattarapongdilok, Naruwan
    Parasuk, Vudhichai
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2020, 1177
  • [22] The Li-Ion Rechargeable Battery: A Perspective
    Goodenough, John B.
    Park, Kyu-Sung
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) : 1167 - 1176
  • [23] Durability of a Li-ion Battery Pack
    Vorel, P.
    Cervinka, D.
    Toman, M.
    Martis, J.
    19TH INTERNATIONAL CONFERENCE ON ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 2018), 2018, 87 (01): : 247 - 252
  • [24] Simulation of the Adsorption and Diffusion of Lithium Atoms on Defective Graphene for a Li-Ion Battery
    Asadov M.M.
    Mammadova S.O.
    Huseynova S.S.
    Mustafaeva S.N.
    Lukichev V.F.
    Russian Microelectronics, 2023, 52 (03) : 167 - 185
  • [25] SiOx Encapsulated in Graphene Bubble Film: An Ultrastable Li-Ion Battery Anode
    Xu, Quan
    Sun, Jian-Kun
    Yu, Zhi-Long
    Yin, Ya-Xia
    Xin, Sen
    Yu, Shu-Hong
    Guo, Yu-Guo
    ADVANCED MATERIALS, 2018, 30 (25)
  • [26] Hydrothermal for Synthesis of CoO Nanoparticles/Graphene Composite as Li-ion Battery Anodes
    Wang Lei
    Zhao Dongdong
    Liu Xu
    Yu Peng
    Fu Honggang
    ACTA CHIMICA SINICA, 2017, 75 (02) : 231 - 236
  • [27] Facile Fabrication of High-Performance Li-Ion Battery Carbonaceous Anode from Li-Ion Battery Waste
    Li, Zheng
    Li, Songxian
    Wang, Tao
    Yang, Kai
    Zhou, Yangen
    Tian, Zhongliang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [28] Effect of electrolytes on the performance of graphene oxide anode material for ultracapacitor, Li-ion capacitor, and Li-ion battery: three-in-one approach
    Thombare, Sohan
    Patil, Rohan
    Malavekar, Dhanaji
    Blomquist, Nicklas
    Olin, Hakan
    Gavhane, Kishor
    Meshram, Jagruti
    Lokhande, Chandrakant
    Phadatare, Manisha
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (10) : 2927 - 2942
  • [29] Effect of electrolytes on the performance of graphene oxide anode material for ultracapacitor, Li-ion capacitor, and Li-ion battery: three-in-one approach
    Sohan Thombare
    Rohan Patil
    Dhanaji Malavekar
    Nicklas Blomquist
    Håkan Olin
    Kishor Gavhane
    Jagruti Meshram
    Chandrakant Lokhande
    Manisha Phadatare
    Indian Journal of Physics, 2023, 97 : 2927 - 2942
  • [30] Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells
    Cai, Xiaoyi
    Lai, Linfei
    Shen, Zexiang
    Lin, Jianyi
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (30) : 15423 - 15446