Graphene/Li-ion battery

被引:51
|
作者
Kheirabadi, Narjes [1 ]
Shafiekhani, Azizollah [2 ,3 ]
机构
[1] IAU, No Tehran Branch, Dept Phys, Tehran 1667934783, Iran
[2] Alzahra Univ, Dept Phys, Tehran 1993893973, Iran
[3] Inst Res Fundamental Sci IPM, Sch Phys, Tehran, Iran
关键词
LITHIUM STORAGE; LI IONS; GRAPHITE; CARBON; CAPACITY; MECHANISM; INSERTION; ANODES; STATES;
D O I
10.1063/1.4771923
中图分类号
O59 [应用物理学];
学科分类号
摘要
Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy, spin polarization, charge distribution, electronic gap, surface curvature, and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene, doped by one Li atom is spin polarized, so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable, because it could improve graphene Li-ion batteries; consequently, the most proper graphene anode structure has been proposed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771923]
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Nanostructured Electrode Materials for Li-ion Battery
    Balaya, Palani
    Saravanan, Kuppan
    Hariharan, Srirama
    ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS, 2010, 7683
  • [22] Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors
    Chen, Yanan
    Fu, Kun
    Zhu, Shuze
    Luo, Wei
    Wang, Yanbin
    Li, Yiju
    Hitz, Emily
    Yao, Yonggang
    Dai, Jiaqi
    Wan, Jiayu
    Danner, Valencia A.
    Li, Teng
    Hu, Liangbing
    NANO LETTERS, 2016, 16 (06) : 3616 - 3623
  • [23] Sodium-Ion Battery: Can It Compete with Li-Ion?
    Kim, Haegyeom
    ACS MATERIALS AU, 2023, 3 (06): : 571 - 575
  • [24] Reduction of graphene oxide in Li-ion batteries
    Zhao, Chunsong
    Gao, Hongpeng
    Chen, Chengmeng
    Wu, Hui
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (36) : 18360 - 18364
  • [25] Effect of degree of reduction on the anode performance of reduced graphene oxide in Li-ion batteries
    Kim, Sujin
    Park, Gyutae
    Sennu, Palanichamy
    Lee, Seungjun
    Choi, Kwangrok
    Oh, Junghoon
    Lee, Yun-Sung
    Park, Sungjin
    RSC ADVANCES, 2015, 5 (105) : 86237 - 86241
  • [26] Synthesis of LiFePO4/carbon/graphene for high-performance Li-ion battery
    Liu, Xuyan
    Sun, Lei
    Vu, Ngoc Hung
    Linh, Dang Thi Hai
    Dien, Phan Thi
    Hoa, Le Thi
    Lien, Do Thi
    Nang, Ho Xuan
    Dao, Van-Duong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 932
  • [27] Electrochemical Characteristics of Li-Ion Battery Anodes Based on Titanium Oxyfluoride
    Astrova, Ekaterina V.
    Parfeneva, Alesya V.
    Li, Galina V.
    Rumyantsev, Aleksander M.
    ENERGY TECHNOLOGY, 2024, 12 (01)
  • [28] On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions
    Banerjee, Anjan
    Shilina, Yuliya
    Ziv, Baruch
    Ziegelbauer, Joseph M.
    Luski, Shalom
    Aurbach, Doron
    Halalay, Ion C.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (05) : 1738 - 1741
  • [29] Ultrasonic reflection/transmission characteristics for state of charge of li-ion battery
    Zhang, Binpeng
    Yan, Lyu
    Jie, Gao
    Song, Guorong
    Lee, Yung-chun
    He, Cunfu
    Song, Weili
    Chen, Haosen
    APPLIED ACOUSTICS, 2023, 214
  • [30] Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes
    Dubey, Romain J-C
    Sasikumar, Pradeep Vallachira Warriam
    Cerboni, Noemi
    Aebli, Marcel
    Krumeich, Frank
    Blugan, Gurdial
    Kravchyk, Kostiantyn, V
    Graule, Thomas
    Kovalenko, Maksym, V
    NANOSCALE, 2020, 12 (25) : 13540 - 13547