Graphene/Li-ion battery

被引:51
|
作者
Kheirabadi, Narjes [1 ]
Shafiekhani, Azizollah [2 ,3 ]
机构
[1] IAU, No Tehran Branch, Dept Phys, Tehran 1667934783, Iran
[2] Alzahra Univ, Dept Phys, Tehran 1993893973, Iran
[3] Inst Res Fundamental Sci IPM, Sch Phys, Tehran, Iran
关键词
LITHIUM STORAGE; LI IONS; GRAPHITE; CARBON; CAPACITY; MECHANISM; INSERTION; ANODES; STATES;
D O I
10.1063/1.4771923
中图分类号
O59 [应用物理学];
学科分类号
摘要
Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy, spin polarization, charge distribution, electronic gap, surface curvature, and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene, doped by one Li atom is spin polarized, so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable, because it could improve graphene Li-ion batteries; consequently, the most proper graphene anode structure has been proposed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771923]
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Application prospect of graphene in Li-ion battery and supercapacitor
    Cui Chao-jie
    Tian Jia-rui
    Yang Zhou-fei
    Jin Ying
    Dong Zhuo-ya
    Xie Qing
    Zhang Gang
    Ye Zhen-Zhen
    Wang Jin
    Liu Sha
    Qian Wei-zhong
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2019, 47 (05): : 1 - 9
  • [2] Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes
    Liu, Jinyun
    Zheng, Qiye
    Goodman, Matthew D.
    Zhu, Haoyue
    Kim, Jinwoo
    Krueger, Neil A.
    Ning, Hailong
    Huang, Xingjiu
    Liu, Jinhuai
    Terrones, Mauricio
    Braun, Paul V.
    ADVANCED MATERIALS, 2016, 28 (35) : 7696 - +
  • [3] Perspective to the Potential Use of Graphene in Li-Ion Battery and Supercapacitor
    Tian, Jiarui
    Yang, Zhoufei
    Yin, Zefang
    Ye, Zhenzhen
    Wang, Jin
    Cui, Chaojie
    Qian, Weizhong
    CHEMICAL RECORD, 2019, 19 (07): : 1256 - 1262
  • [4] A perspective on the Li-ion battery
    John B. Goodenough
    Hongcai Gao
    Science China Chemistry, 2019, 62 : 1555 - 1556
  • [5] Li-ion battery electrolytes
    Xu, Kang
    NATURE ENERGY, 2021, 6 (07) : 763 - 763
  • [6] A perspective on the Li-ion battery
    John B.Goodenough
    Hongcai Gao
    Science China(Chemistry), 2019, 62 (12) : 1555 - 1556
  • [7] A perspective on the Li-ion battery
    John B.Goodenough
    Hongcai Gao
    Science China(Chemistry), 2019, (12) : 1555 - 1556
  • [8] A perspective on the Li-ion battery
    Goodenough, John B.
    Gao, Hongcai
    SCIENCE CHINA-CHEMISTRY, 2019, 62 (12) : 1555 - 1556
  • [9] Li-ion battery electrolytes
    Kang Xu
    Nature Energy, 2021, 6 : 763 - 763
  • [10] Tin-Graphene Anode Boosts Li-Ion Battery Capacity
    不详
    CHEMICAL ENGINEERING PROGRESS, 2011, 107 (09) : 14 - 14