Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions

被引:30
作者
Kim, YC
Sugawa, T
机构
[1] Yeungnam Univ, Dept Math Educ, Kyongsan 712749, South Korea
[2] Hiroshima Univ, Grad Sch Sci, Dept Math, Higashihiroshima 7398526, Japan
关键词
pre-Schwarzian derivative; uniformly locally univalent; close-to-convex function;
D O I
10.1017/S0013091504000306
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sharp norm estimate will be given to the pre-Schwarzian derivatives of close-to-convex functions of specified type. In order to show the sharpness, we introduce a kind of maximal operator which may be of independent interest. We also discuss a relation between the subclasses of close-to-convex functions and the Hardy spaces.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 16 条
[1]  
Aleman A., 1995, Complex Variables Theory Appl., V28, P149, DOI DOI 10.1080/17476939508814844
[2]  
[Anonymous], ANN U MARIAE CURIE A
[3]  
[Anonymous], B ACAD POLON SCI SMA
[4]  
Duren P. L., 1970, PURE APPL MATH, V38
[5]  
Duren P. L., 1983, Univalent functions
[6]  
Janowski W., 1973, ANN POL MATH, V23, P159
[7]   Coefficient bounds and convolution properties for certain classes of close-to-convex functions [J].
Kim, YC ;
Choi, JH ;
Sugawa, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2000, 76 (06) :95-98
[8]   Growth and coefficient estimates for uniformly locally univalent functions on the unit disk [J].
Kim, YC ;
Sugawa, T .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2002, 32 (01) :179-200
[9]  
KIM YC, IN PRESS MICHIGAN MA
[10]  
Ma WC, 1992, P C COMPL AN, P157