Efficient finite element simulation of crack propagation using adaptive iterative solvers

被引:15
作者
Meyer, A
Rabold, F
Scherzer, M
机构
[1] TU Bergakad Freiberg, Inst Mech & Fluid Dynam, Fak Maschinenbau Verfahrens & Energietech, D-09596 Freiberg, Germany
[2] TU Chemnitz, Fak Math, D-9107 Chemnitz, Germany
来源
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING | 2006年 / 22卷 / 02期
关键词
crack propagation; adaptive finite elements; hierarchical iterative solver;
D O I
10.1002/cnm.799
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper delivers an efficient solution technique for the numerical simulation of crack propagation of 2D linear elastic formulations based on finite elements together with the conjugate gradient method in order to solve the corresponding linear equation systems. The developed iterative numerical approach using hierarchical preconditioners has the interesting feature that the hierarchical data structure will not be destroyed during crack propagation. Thus, it is possible to simulate crack advance in a very effective numerical manner, including adaptive mesh refinement and mesh coarsening. Test examples are presented to illustrate the efficiency of the given approach. Numerical simulations of crack propagation are compared with experimental data. Copyright (C) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 38 条
[1]  
[Anonymous], 1991, NONLINEAR THEORY ELA
[2]  
[Anonymous], 1963, J FLUIDS ENG, DOI DOI 10.1115/1.3656897
[3]  
Bansch E., 1991, Impact of Computing in Science and Engineering, V3, P181, DOI 10.1016/0899-8248(91)90006-G
[4]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[5]  
2-S
[6]  
Belytschko T, 2001, INT J NUMER METH ENG, V50, P993, DOI 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO
[7]  
2-M
[8]  
BORISKOVSKY VG, 1983, PROGR SCI ENG MECH D, V16, P1
[9]  
BRAMBLE JH, 1990, MATH COMPUT, V55, P1, DOI 10.1090/S0025-5718-1990-1023042-6
[10]  
Cherepanov GP., 1979, MECH BRITTLE FRACTUR