Fractional dynamics approach to diffusion-assisted reactions in disordered media

被引:66
作者
Sung, JY [1 ]
Barkai, E
Silbey, RJ
Lee, S
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Seoul Natl Univ, Sch Chem & Mol Engn, Seoul 151747, South Korea
[4] Seoul Natl Univ, Ctr Mol Catalysis, Seoul 151747, South Korea
关键词
D O I
10.1063/1.1448294
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a theory for describing nonclassical dynamics of reactions occurring in disordered media based on the fractional diffusion equation. An exact expression is derived for the Green's function required to calculate the survival probabilities of reactants. A novel temperature-dependent kinetic phase transition is found: The exponent gamma in the asymptotic power-law decay (proportional tot(-gamma)) of the geminate survival probability increases with temperature T below a critical temperature T-*, but decreases with T above T-*. The present theory explains in a unified manner the observed features of ligand-protein recombination reactions for a wide range of temperature and time scales. (C) 2002 American Institute of Physics.
引用
收藏
页码:2338 / 2341
页数:4
相关论文
共 37 条