A class of fractional integral transforms: A generalization of the fractional Fourier transform

被引:38
作者
Zayed, AI [1 ]
机构
[1] De Paul Univ, Dept Math Sci, Chicago, IL 60614 USA
关键词
fractional derivatives and integrals; fractional Fourier transform; fractional Hankel transform; fractional transforms;
D O I
10.1109/78.984750
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this paper is to present a systematic and unified approach to fractional integral transforms. We introduce a new class of fractional integral transforms that includes the fractional Fourier and Hankel transforms and the fractional integration and differentiation operators as special cases. These fractional transforms may also be viewed as angular transforms, indexed by an angular parameter alpha, since their kernels are obtained by taking the limits of analytic functions in the unit disc along a radius making an angle alpha with the x-axis.
引用
收藏
页码:619 / 627
页数:9
相关论文
共 44 条
[1]   OPTICAL OPERATIONS ON WAVE-FUNCTIONS AS THE ABELIAN SUBGROUPS OF THE SPECIAL AFFINE FOURIER TRANSFORMATION [J].
ABE, S ;
SHERIDAN, JT .
OPTICS LETTERS, 1994, 19 (22) :1801-1803
[2]   On fractional Fourier transform moments [J].
Alieva, T ;
Bastiaans, MJ .
IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (11) :320-323
[3]   Mode analysis in optics through fractional transforms [J].
Alieva, T ;
Bastiaans, MJ .
OPTICS LETTERS, 1999, 24 (17) :1206-1208
[4]   THE FRACTIONAL FOURIER-TRANSFORM IN OPTICAL PROPAGATION PROBLEMS [J].
ALIEVA, T ;
LOPEZ, V ;
AGULLOLOPEZ, F ;
ALMEIDA, LB .
JOURNAL OF MODERN OPTICS, 1994, 41 (05) :1037-1044
[5]  
Almeida L.B., 1993, P IEEE AC SPEECH SIG
[6]   THE FRACTIONAL FOURIER-TRANSFORM AND TIME-FREQUENCY REPRESENTATIONS [J].
ALMEIDA, LB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :3084-3091
[7]  
Bailey W.N., 1938, J. Lond. Math. Soc., V13, P8, DOI DOI 10.1112/JLMS/S1-13.1.8
[8]   A four-parameter atomic decomposition of chirplets [J].
Bultan, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (03) :731-745
[9]   The discrete fractional Fourier transform [J].
Candan, Ç ;
Kutay, MA ;
Ozaktas, HM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (05) :1329-1337
[10]   A unified framework for the fractional Fourier transform [J].
Cariolaro, G ;
Erseghe, T ;
Kraniauskas, P ;
Laurenti, N .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) :3206-3219