An ellipsoidal K-means for document clustering

被引:3
作者
Dzogang, Fabon [1 ]
Marsala, Christophe [1 ]
Lesot, Marie-Jeanne [1 ]
Rifqi, Maria [2 ,3 ]
机构
[1] Univ Paris 06, UMR7606, LIP6, Paris, France
[2] LIP6, Paris, France
[3] Univ Pantheon Assas, Paris, France
来源
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012) | 2012年
关键词
clustering; feature selection; spherical k-means; information retrieval;
D O I
10.1109/ICDM.2012.126
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an extension of the spherical K-means algorithm to deal with settings where the number of data points is largely inferior to the number of dimensions. We assume the data to lie in local and dense regions of the original space and we propose to embed each cluster into its specific ellipsoid. A new objective function is introduced, analytical solutions are derived for both the centroids and the associated ellipsoids. Furthermore, a study on the complexity of this algorithm highlights that it is of same order as the regular K-means algorithm. Results on both synthetic and real data show the efficiency of the proposed method.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 50 条
  • [31] Locally Private k-Means Clustering
    Stemmer, Uri
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [32] An Improved Method for K-Means Clustering
    Cui, Xiaowei
    Wang, Fuxiang
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 756 - 759
  • [33] APPLICATION OF METAHEURISTICS TO K-MEANS CLUSTERING
    Lisin, A. V.
    Faizullin, R. T.
    COMPUTER OPTICS, 2015, 39 (03) : 406 - 412
  • [34] An Improved K-means Clustering Algorithm
    Wang Yintong
    Li Wanlong
    Gao Rujia
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [35] Unsupervised K-Means Clustering Algorithm
    Sinaga, Kristina P.
    Yang, Miin-Shen
    IEEE ACCESS, 2020, 8 : 80716 - 80727
  • [36] Dynamic Incremental K-means Clustering
    Aaron, Bryant
    Tamir, Dan E.
    Rishe, Naphtali D.
    Kandel, Abraham
    2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), VOL 1, 2014, : 308 - 313
  • [37] An Enhancement of K-means Clustering Algorithm
    Gu, Jirong
    Zhou, Jieming
    Chen, Xianwei
    2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 237 - 240
  • [38] DOCUMENT SUMMARIZATION USING NMF AND PSEUDO RELEVANCE FEEDBACK BASED ON K-MEANS CLUSTERING
    Park, Sun
    Cha, ByungRae
    Kim, JongWon
    COMPUTING AND INFORMATICS, 2016, 35 (03) : 744 - 760
  • [39] Global k-means plus plus : an effective relaxation of the global k-means clustering algorithm
    Vardakas, Georgios
    Likas, Aristidis
    APPLIED INTELLIGENCE, 2024, 54 (19) : 8876 - 8888
  • [40] Unsupervised Bayesian feature selection based on k-means clustering
    Yan, Liu
    Yan, Peng
    IC-BNMT 2007: PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON BROADBAND NETWORK & MULTIMEDIA TECHNOLOGY, 2007, : 352 - 356