An ellipsoidal K-means for document clustering

被引:3
作者
Dzogang, Fabon [1 ]
Marsala, Christophe [1 ]
Lesot, Marie-Jeanne [1 ]
Rifqi, Maria [2 ,3 ]
机构
[1] Univ Paris 06, UMR7606, LIP6, Paris, France
[2] LIP6, Paris, France
[3] Univ Pantheon Assas, Paris, France
来源
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012) | 2012年
关键词
clustering; feature selection; spherical k-means; information retrieval;
D O I
10.1109/ICDM.2012.126
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an extension of the spherical K-means algorithm to deal with settings where the number of data points is largely inferior to the number of dimensions. We assume the data to lie in local and dense regions of the original space and we propose to embed each cluster into its specific ellipsoid. A new objective function is introduced, analytical solutions are derived for both the centroids and the associated ellipsoids. Furthermore, a study on the complexity of this algorithm highlights that it is of same order as the regular K-means algorithm. Results on both synthetic and real data show the efficiency of the proposed method.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 50 条
  • [21] K-Means Divide and Conquer Clustering
    Khalilian, Madjid
    Boroujeni, Farsad Zamani
    Mustapha, Norwati
    Sulaiman, Md. Nasir
    2009 INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, PROCEEDINGS, 2009, : 306 - 309
  • [22] Global optimality in k-means clustering
    Tirnauca, Cristina
    Gomez-Perez, Domingo
    Balcazar, Jose L.
    Montana, Jose L.
    INFORMATION SCIENCES, 2018, 439 : 79 - 94
  • [23] The LINEX Weighted k-Means Clustering
    Narges Ahmadzadehgoli
    Adel Mohammadpour
    Mohammad Hassan Behzadi
    Journal of Statistical Theory and Applications, 2019, 18 : 147 - 154
  • [24] Locality Sensitive K-means Clustering
    Liu, Chlen-Liang
    Hsai, Wen-Hoar
    Chang, Tao-Hsing
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2018, 34 (01) : 289 - 305
  • [25] Modified k-Means Clustering Algorithm
    Patel, Vaishali R.
    Mehta, Rupa G.
    COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 307 - +
  • [26] The validity of pyramid K-means clustering
    Tamir, Dan E.
    Park, Chi-Yeon
    Yoo, Wook-Sung
    MATHEMATICS OF DATA/IMAGE PATTERN RECOGNITION, COMPRESSION, CODING, AND ENCRYPTION X, WITH APPLICATIONS, 2007, 6700
  • [27] Improved Algorithm for the k-means Clustering
    Zhang, Sheng
    Wang, Shouqiang
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4717 - 4720
  • [28] Adaptive K-Means clustering algorithm
    Chen, Hailin
    Wu, Xiuqing
    Hu, Junhua
    MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788
  • [29] k-Means Clustering of Asymmetric Data
    Olszewski, Dominik
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 243 - 254
  • [30] An improved K-means clustering algorithm
    Huang, Xiuchang
    Su, Wei
    Journal of Networks, 2014, 9 (01) : 161 - 167