An ellipsoidal K-means for document clustering

被引:3
作者
Dzogang, Fabon [1 ]
Marsala, Christophe [1 ]
Lesot, Marie-Jeanne [1 ]
Rifqi, Maria [2 ,3 ]
机构
[1] Univ Paris 06, UMR7606, LIP6, Paris, France
[2] LIP6, Paris, France
[3] Univ Pantheon Assas, Paris, France
来源
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012) | 2012年
关键词
clustering; feature selection; spherical k-means; information retrieval;
D O I
10.1109/ICDM.2012.126
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an extension of the spherical K-means algorithm to deal with settings where the number of data points is largely inferior to the number of dimensions. We assume the data to lie in local and dense regions of the original space and we propose to embed each cluster into its specific ellipsoid. A new objective function is introduced, analytical solutions are derived for both the centroids and the associated ellipsoids. Furthermore, a study on the complexity of this algorithm highlights that it is of same order as the regular K-means algorithm. Results on both synthetic and real data show the efficiency of the proposed method.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 50 条
  • [1] K-means based method for overlapping document clustering
    Beltran, Beatriz
    Vilarino, Darnes
    Martinez-Trinidad, Jose Fco.
    Carrasco-Ochoa, J. A.
    Pinto, David
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (02) : 2127 - 2135
  • [2] Text Document Clustering Based on Density K-means
    Wu, Di
    Zeng, Yan
    Qu, Yin-chuan
    INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS AND ELECTRONIC ENGINEERING (CMEE 2016), 2016,
  • [3] SKIFF: Spherical K-means with iterative feature filtering for text document clustering
    Sharma, Iti
    Sharma, Abhay
    Chaturvedi, Rekha
    Rajpurohit, Jitendra
    Kumar, Manoj
    JOURNAL OF INFORMATION SCIENCE, 2023,
  • [4] Feature weighting in k-means clustering
    Modha, DS
    Spangler, WS
    MACHINE LEARNING, 2003, 52 (03) : 217 - 237
  • [5] Feature Weighting in k-Means Clustering
    Dharmendra S. Modha
    W. Scott Spangler
    Machine Learning, 2003, 52 : 217 - 237
  • [6] Selection of K in K-means clustering
    Pham, DT
    Dimov, SS
    Nguyen, CD
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2005, 219 (01) : 103 - 119
  • [7] Balanced K-Means for Clustering
    Malinen, Mikko I.
    Franti, Pasi
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2014, 8621 : 32 - 41
  • [8] Transformed K-means Clustering
    Goel, Anurag
    Majumdar, Angshul
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1526 - 1530
  • [9] Spherical k-Means Clustering
    Hornik, Kurt
    Feinerer, Ingo
    Kober, Martin
    Buchta, Christian
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (10): : 1 - 22
  • [10] Deep k-Means: Jointly clustering with k-Means and learning representations
    Fard, Maziar Moradi
    Thonet, Thibaut
    Gaussier, Eric
    PATTERN RECOGNITION LETTERS, 2020, 138 : 185 - 192