Extremal functions for singular Trudinger-Moser inequalities in the entire Euclidean space

被引:51
作者
Li, Xiaomeng [1 ,2 ]
Yang, Yunyan [1 ]
机构
[1] Renmin Univ China, Dept Math, Beijing 100872, Peoples R China
[2] Huaibei Normal Univ, Sch Informat, Huaibei 235000, Peoples R China
基金
美国国家科学基金会;
关键词
Singular Trudinger-Moser inequality; Extremal function; Blow-up analysis; NONTRIVIAL SOLUTION; ELLIPTIC EQUATION; UNBOUNDED-DOMAINS; EXISTENCE; GROWTH;
D O I
10.1016/j.jde.2017.12.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous work (Adimurthi and Yang, 2010 [20]), Adimurthi-Yang proved a singular Trudinger-Moser inequality in the entire Euclidean space R-N (N >= 2). Precisely, if 0 <= beta < 1 and 0 < gamma <= 1 - beta, then there holds for any tau > 0, u is an element of W-1,W-N(R-N), integral(sup)(RN)(vertical bar del u vertical bar(N)+tau vertical bar u vertical bar(N))dx <= 1 integral(RN) 1/vertical bar x vertical bar(N beta) (e(alpha N gamma vertical bar u vertical bar N/N-1) - Sigma(N-2)(k=0) N-alpha k(gamma k)vertical bar u vertical bar(kN/N-1)/k!) dx < infinity, where alpha(N) = N-omega N-1(1/(N-1)) and omega(N-1) is the area of the unit sphere in R-N. The above inequality is sharp in the sense that if gamma > 1 - beta, all integrals are still finite but the supremum is infinity. In this paper, we concern extremal functions for these singular inequalities. The regular case beta = 0 has been considered by Li and Ruf (2008) [12] and Ishiwata (2011) [11]. We shall investigate the singular case 0 < beta < 1 and prove that for all tau > 0, 0 < beta < 1 and 0 < y <= 1 - beta, extremal functions for the above inequalities exist. The proof is based on blow-up analysis. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:4901 / 4943
页数:43
相关论文
共 29 条
[1]   An Interpolation of Hardy Inequality and Trudinger-Moser Inequality in RN and Its Applications [J].
Adimurthi ;
Yang, Yunyan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (13) :2394-2426
[2]   A singular Moser-Trudinger embedding and its applications [J].
Adimurthi ;
Sandeep, K. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 13 (5-6) :585-603
[3]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[4]  
CARLESON L, 1986, B SCI MATH, V110, P113
[5]   Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions [J].
Csato, Gyula ;
Roy, Prosenjit .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) :2341-2366
[6]   A SHARP TRUDINGER-MOSER TYPE INEQUALITY IN R2 [J].
de Souza, Manasses ;
do O, Joao Marcos .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (09) :4513-4549
[7]  
Ding W., 1997, ASIAN J MATH, V1, P230, DOI DOI 10.4310/AJM.1997.v1.n2.a3
[8]  
do O J.M., 1997, ABSTR APPL ANAL, V2, P301
[9]   A sharp inequality of Trudinger-Moser type and extremal functions in H1,n (Rn) [J].
do O, Joao Marcos ;
de Souza, Manasses .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (11) :4062-4101
[10]   EXTREMAL-FUNCTIONS FOR THE TRUDINGER-MOSER INEQUALITY IN 2 DIMENSIONS [J].
FLUCHER, M .
COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (03) :471-497