Goodness-of-fit statistics, discrepancies and robust designs

被引:42
作者
Hickernell, FJ [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, Hong Kong, SAR, Peoples R China
关键词
Cramer-Von Mises; low discrepancy; reproducing kernel Hilbert spaces;
D O I
10.1016/S0167-7152(98)00293-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Cramer-Von Mises goodness-of-fit statistic, also known as the L-2-star discrepancy, is the optimality criterion for an experimental design for the location model with misspecification. This connection between goodness-of-fit statistics, discrepancies and experimental designs is shown to hold in greater generality. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 10 条
[1]  
DAGOSTINO RB, 1986, GOODNESS OF FIT TECH
[2]  
Hellekalek P., 1998, Random and Quasi-Random Point Sets, P109, DOI [10.1007/978-1-4612-1702-2_3, DOI 10.1007/978-1-4612-1702-2_3]
[3]   A generalized discrepancy and quadrature error bound [J].
Hickernell, FJ .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :299-322
[4]  
LIANG JJ, 1998, UNPUB TESTING MULTIV
[5]   QUASI-RANDOM SEQUENCES AND THEIR DISCREPANCIES [J].
MOROKOFF, WJ ;
CAFLISCH, RE .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (06) :1251-1279
[6]  
Wahba G, 1990, SPLINE MODELS OBSERV
[7]  
Wang Y., 1981, KEXUE TONGBAO, P485, DOI DOI 10.1142/9789812701190_
[8]   AVERAGE CASE COMPLEXITY OF MULTIVARIATE INTEGRATION [J].
WOZNIAKOWSKI, H .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 24 (01) :185-194
[9]  
YUE RX, 1999, IN PRESS STAT SINICA
[10]  
ZAREMBA SK, 1968, ANN POL MATH, V21, P85