Pricing by hedging and no-arbitrage beyond semimartingales

被引:56
作者
Bender, Christian [5 ]
Sottinen, Tommi [2 ,3 ,4 ]
Valkeila, Esko [1 ]
机构
[1] Helsinki Univ Technol, Dept Math & Syst Anal, Helsinki 02015, Finland
[2] Reykjavik Univ, Sch Sci & Engn, IS-103 Reykjavik, Iceland
[3] Reykjavik Univ, Sch Business, IS-103 Reykjavik, Iceland
[4] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[5] Tech Univ Carolo Wilhelmina Braunschweig, Inst Math Stochast, D-38106 Braunschweig, Germany
基金
芬兰科学院;
关键词
arbitrage; pricing; quadratic variation; Robust hedging;
D O I
10.1007/s00780-008-0074-8
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We show that pricing a big class of relevant options by hedging and no-arbitrage can be extended beyond semimartingale models. To this end we construct a subclass of self-financing portfolios that contains hedges for these options, but does not contain arbitrage opportunities, even if the stock price process is a non-semimartingale of some special type. Moreover, we show that the option prices depend essentially only on a path property of the stock price process, viz. on the quadratic variation. We end the paper by giving no-arbitrage results even with stopping times for our model class.
引用
收藏
页码:441 / 468
页数:28
相关论文
共 20 条
[1]  
Androshchuk T., 2006, Stochastics, V78, P281
[2]  
[Anonymous], 1998, Derivatives: The Theory and Practice of Financial Engineering
[3]   Arbitrage in fractional Brownian motion models [J].
Cheridito, P .
FINANCE AND STOCHASTICS, 2003, 7 (04) :533-553
[4]   Mixed fractional Brownian motion [J].
Cheridito, P .
BERNOULLI, 2001, 7 (06) :913-934
[5]   Arbitrage opportunities for a class of Gladyshev processes [J].
Dasgupta, A ;
Kallianpur, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 41 (03) :377-385
[6]   A GENERAL VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING [J].
DELBAEN, F ;
SCHACHERMAYER, W .
MATHEMATISCHE ANNALEN, 1994, 300 (03) :463-520
[7]  
Dupire B., 1994, RISK, V7, P18
[8]  
FOLLMER H, 1981, LECT NOTES MATH, V850, P143
[9]   Consistent price systems and face-lifting pricing under transaction costs [J].
Guasoni, Paolo ;
Rasonyi, Mikloz ;
Schachermayer, Walter .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (02) :491-520
[10]   No arbitrage under transaction costs, with fractional brownian motion and beyond [J].
Guasoni, Paolo .
MATHEMATICAL FINANCE, 2006, 16 (03) :569-582