Minimum hardware requirements for hybrid quantum-classical DMFT

被引:31
作者
Jaderberg, B. [1 ]
Agarwal, A. [1 ]
Leonhardt, K. [1 ]
Kiffner, M. [1 ,2 ]
Jaksch, D. [1 ,2 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
hybrid quantum-classical algorithms; variational quantum algorithms; two-site DMFT; dynamical mean-field theory; quantum computing; quantum chemistry; NISQ;
D O I
10.1088/2058-9565/ab972b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We numerically emulate noisy intermediate-scale quantum (NISQ) devices and determine the minimal hardware requirements for two-site hybrid quantum-classical dynamical mean-field theory (DMFT). We develop a circuit recompilation algorithm which significantly reduces the number of quantum gates of the DMFT algorithm and find that the quantum-classical algorithm converges if the two-qubit gate fidelities are larger than 99%. The converged results agree with the exact solution within 10%, and perfect agreement within noise-induced error margins can be obtained for two-qubit gate fidelities exceeding 99.9%. By comparison, the quantum-classical algorithm without circuit recompilation requires a two-qubit gate fidelity of at least 99.999% to achieve perfect agreement with the exact solution. We thus find quantum-classical DMFT calculations can be run on the next generation of NISQ devices if combined with the recompilation techniques developed in this work.
引用
收藏
页数:12
相关论文
共 50 条
[1]  
Abraham H., 2019, QISKIT OPEN SOURCE F, DOI DOI 10.5281/ZENODO.2562110
[2]  
[Anonymous], 2010, QUANTUM COMPUTATION, DOI [DOI 10.1017/CBO9780511976667, 10.1017/CBO9780511976667.]
[3]  
[Anonymous], ARXIV190513641QUANTP
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[6]   Realization of efficient quantum gates with a superconducting qubit-qutrit circuit [J].
Baekkegaard, T. ;
Kristensen, L. B. ;
Loft, N. J. S. ;
Andersen, C. K. ;
Petrosyan, D. ;
Zinner, N. T. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]   Hybrid Quantum-Classical Approach to Correlated Materials [J].
Bauer, Bela ;
Wecker, Dave ;
Millis, Andrew J. ;
Hastings, Matthew B. ;
Troyer, Matthias .
PHYSICAL REVIEW X, 2016, 6 (03)
[8]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[9]   Quantum stabilizer codes for correlated and asymmetric depolarizing errors [J].
Cafaro, Carlo ;
Mancini, Stefano .
PHYSICAL REVIEW A, 2010, 82 (01)
[10]   Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model [J].
Cheuk, Lawrence W. ;
Nichols, Matthew A. ;
Lawrence, Katherine R. ;
Okan, Melih ;
Zhang, Hao ;
Khatami, Ehsan ;
Trivedi, Nandini ;
Paiva, Thereza ;
Rigol, Marcos ;
Zwierlein, Martin W. .
SCIENCE, 2016, 353 (6305) :1260-1264