Unsupervised perceptual model for color image's segmentation

被引:0
作者
Sobrevilla, P [1 ]
Gómez, D [1 ]
Montero, J [1 ]
Montseny, E [1 ]
机构
[1] Tech Univ Catalonia, Appl Math Dept 2, Barcelona, Spain
来源
NAFIPS 2005 - 2005 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY | 2005年
关键词
segmentation algorithms; image classification; coloring problem; fuzzy sets; perceptual vision;
D O I
10.1109/NAFIPS.2005.1548560
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Color Segmentation is a fundamental, step in image understanding. Moreover, for getting accurate color image's segmentation algorithms, human being's perception of color should be considered. In this line we propose an unsupervised segmentation algorithm that is based on a fuzzy graph coloring process for representing the fuzzy color similarity degrees among neighboring pixels from a perceptual point of view. As main goal is to detect and extract the regions explaining the image, we stress the role of coloring procedures for unsupervised segmentation and fuzzy classification by means of useful, comprehensive and simple enough fuzzy graphical representations.
引用
收藏
页码:349 / 354
页数:6
相关论文
共 9 条
  • [1] AMO A, IN PRESS EUROPEAN J
  • [2] [Anonymous], 1978, ACM SIGGRAPH COMPUTE
  • [3] Gómez D, 2004, IEEE INT CONF FUZZY, P127
  • [4] MONTSENY E, P IPMU C PER 2004, P1905
  • [5] MUNOZ S, 2004, IN PRESS OMEGA
  • [6] Pardalos PM, 1998, HDB COMBINATORIAL OP, V2, P331
  • [7] COLOR-PERCEPTION
    ROBERTSON, AR
    [J]. PHYSICS TODAY, 1992, 45 (12) : 24 - 29
  • [8] Romani S, 2003, IEEE INT CONF FUZZY, P914
  • [9] Wyszecki G., 1967, Color Science-Concepts and Methods, Quantitative Data and Formulas