Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters

被引:23
作者
Hoffman, David S.
Repasky, Kevin S. [1 ]
Reagan, John A. [2 ]
Carlsten, John L. [1 ]
机构
[1] Montana State Univ, Dept Phys, EPS 264, Bozeman, MT 59717 USA
[2] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
关键词
OPTICAL-SCATTERING PROPERTIES; RAYLEIGH-MIE LIDAR; ATMOSPHERIC AEROSOLS; BACKSCATTER; EXTINCTION; ABSORPTION; CALIBRATION;
D O I
10.1364/AO.51.006233
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The high spectral resolution lidar (HSRL) instrument described in this paper utilizes the fundamental and second-harmonic output from an injection seeded Nd:YAG laser as the laser transmitter. The light scattered in the atmosphere is collected using a commercial Schmidt-Cassegrain telescope with the optical receiver train first splitting the fundamental and second-harmonic return signal with the fundament light monitored using an avalanche photodiode. The second-harmonic return signal is mode matched into a tunable confocal Fabry-Perot (CFP) interferometer with a free spectral range of 7.5 GHz and a finesse of 50.7 (312) at 532 nm (1064 nm) placed in the optical receiver for spectrally filtering the molecular and aerosol return signals. The light transmitted through the CFP is used to monitor the aerosol return signal while the light reflected from the CFP is used to monitor the molecular return signal. Data collected with the HSRL are presented and inversion results are compared to a co-located solar radiometer, demonstrating the successful operation of the instrument. The CFP-based filtering technique successfully employed by this HSRL instrument is easily portable to other arbitrary wavelengths, thus allowing for the future development of multiwavelength HSRL instruments. (c) 2012 Optical Society of America
引用
收藏
页码:6233 / 6244
页数:12
相关论文
共 46 条
[1]  
Alvarez R. J., 1990, APPL OPTICS, V7, P876
[2]   CONFOCAL MULTIMODE RESONATOR FOR MILLIMETER THROUGH OPTICAL WAVELENGTH MASERS [J].
BOYD, GD ;
GORDON, JP .
BELL SYSTEM TECHNICAL JOURNAL, 1961, 40 (02) :489-+
[3]   ABSORPTION AND EMISSION OF EVANESCENT PHOTONS [J].
CARNIGLIA, CK ;
MANDEL, L ;
DREXHAGE, KH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1972, 62 (04) :479-+
[4]   Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations [J].
Cattrall, C ;
Reagan, J ;
Thome, K ;
Dubovik, O .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D10) :1-13
[5]   Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients [J].
Esselborn, Michael ;
Wirth, Martin ;
Fix, Andreas ;
Tesche, Matthias ;
Ehret, Gerhard .
APPLIED OPTICS, 2008, 47 (03) :346-358
[6]  
Fernald F. G., 1972, Journal of Applied Meteorology, V11, P482, DOI 10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO
[7]  
2
[8]   ANALYSIS OF ATMOSPHERIC LIDAR OBSERVATIONS - SOME COMMENTS [J].
FERNALD, FG .
APPLIED OPTICS, 1984, 23 (05) :652-653
[9]  
Forster P, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P129
[10]   Solar confocal interferometers for sub-picometer-resolution spectral filters [J].
Gary, G. A. ;
Pietraszewski, C. ;
West, E. A. ;
Dines, T. C. .
ASTRONOMY & ASTROPHYSICS, 2007, 467 (01) :375-383