Clifford A-algebras of Quadratic A-Modules

被引:0
作者
Ntumba, Patrice P. [1 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Hatfield, South Africa
关键词
Clifford A-morphism; quadratic A-module; Riemannian quadratic A-module; Clifford A-algebra; principal A-automorphism; even sub-A-algebra; A-antiautomorphism; sub-A-module of odd products;
D O I
10.1007/s00006-012-0333-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Clifford A-algebra of a quadratic A-module (epsilon, q) is an associative and unital A-algebra (i.e. sheaf of A-algebras) associated with the quadratic ShSet(X)-morphism q, and satisfying a certain universal property. By introducing sheaves of sets of orthogonal bases (or simply sheaves of orthogonal bases), we show that with every Riemannian quadratic free A-module of finite rank, say, n, one can associate a Clifford free A-algebra of rank 2(n) . This "main" result is stated in Theorem 3.2.
引用
收藏
页码:1093 / 1107
页数:15
相关论文
共 10 条
  • [1] [Anonymous], 1981, FORMES QUADRATIQUES
  • [2] [Anonymous], 2002, ALGEBRA
  • [3] Chevalley C, 1997, The Algebraic Theory of Spinors and Clifford Algebras
  • [4] Mallios A., 1998, Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry, Vol II: Geometry Examples and Applications, VII
  • [5] Mallios A., 1998, MATH JAPONICA PLAZA, V48
  • [6] Mallios A, 2008, INT J THEOR PHYS, V47, P1929, DOI 10.1007/s10773-007-9637-2
  • [7] Mallios A, 2006, NOTE MAT, V25, P57
  • [8] Mallios A, 2009, REND CIRC MAT PALERM, V58, P169, DOI 10.1007/s12215-009-0015-1
  • [9] Ntumba P.P., CZECHOSLOVA IN PRESS
  • [10] [No title captured]