On the Diophantine equation x4 - q4 = pyr

被引:3
作者
Bajolet, Aurelien [1 ]
Dupuy, Benjamin [1 ]
Luca, Florian [2 ]
Togbe, Alain [3 ]
机构
[1] Univ Bordeaux 1, Inst Math, F-33404 Talence, France
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Morelia 58089, Michoacan, Mexico
[3] Purdue Univ, Dept Math, Westville, IN 46391 USA
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2011年 / 79卷 / 3-4期
关键词
exponential Diophantine equations; INTEGRAL SOLUTIONS; POINTS; BOUNDS;
D O I
10.5486/PMD.2011.5040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize up to finitely many exceptions all the solutions of the Diophantine equation x(4) - q(4) = py(r) with r > 3 a fixed prime. When r = 5, we show that there are no exceptions.
引用
收藏
页码:269 / 282
页数:14
相关论文
共 30 条
[1]  
[Anonymous], 2005, BORD
[2]   BOUNDS FOR SOLUTIONS OF HYPERELLIPTIC EQUATION [J].
BAKER, A .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 65 :439-&
[3]  
Bateman P., 1962, MATH COMPUT, V16, P363
[4]   EFFECTIVE ANALYSIS OF INTEGRAL POINTS ON ALGEBRAIC-CURVES [J].
BILU, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1995, 90 (1-3) :235-252
[5]  
Bilu Y, 2001, J REINE ANGEW MATH, V539, P75
[6]   Solving superelliptic diophantine equations by Baker's method [J].
Bilu, YF ;
Hanrot, G .
COMPOSITIO MATHEMATICA, 1998, 112 (03) :273-312
[7]   ON S-INTEGRAL SOLUTIONS OF THE EQUATION YM=F(X) [J].
BRINDZA, B .
ACTA MATHEMATICA HUNGARICA, 1984, 44 (1-2) :133-139
[8]   Bounds for the solutions of superelliptic equations [J].
Bugeaud, Y .
COMPOSITIO MATHEMATICA, 1997, 107 (02) :187-219
[9]   Integral points on hyperelliptic curves [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir ;
Stoll, Michael ;
Tengely, Szabolcs .
ALGEBRA & NUMBER THEORY, 2008, 2 (08) :859-885
[10]  
Cohn J. H., 1964, Proc. Lond. Math. Soc., V39, P537, DOI 10.1112/jlms/s1-39.1.537