A local projection stabilized method for fictitious domains

被引:14
作者
Barrenechea, Gabriel R. [1 ]
Chouly, Franz [2 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
[2] UMR CNRS 6623, Lab Math Besancon, F-25030 Besancon, France
关键词
Fictitious domain; Minimal stabilization method; Local projection; FINITE-ELEMENT-METHOD;
D O I
10.1016/j.aml.2012.04.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work a local projection stabilization method is proposed for solving a fictitious domain problem. The method adds a suitable fluctuation term to the formulation, thus yielding the natural space for the Lagrange multiplier stable. Stability and convergence are proved and these results are illustrated with a numerical experiment. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2071 / 2076
页数:6
相关论文
共 9 条
[1]  
Brezzi F, 2001, NUMER MATH, V89, P457, DOI 10.1007/s002110100258
[2]   Pressure projection Stabilizations for Galerkin approximations of Stokes' and Darcy's problem [J].
Burman, Erik .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (01) :127-143
[3]   Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method [J].
Burman, Erik ;
Hansbo, Peter .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) :328-341
[4]   Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method [J].
Burman, Erik ;
Hansbo, Peter .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (41-44) :2680-2686
[5]  
Ern A., 2004, APPL MATH SCI, V159
[6]  
Girault V., 1995, Jpn. J. Ind. Appl. Math., V12, P487, DOI 10.1007/BF03167240
[7]   A FICTITIOUS DOMAIN METHOD FOR DIRICHLET PROBLEM AND APPLICATIONS [J].
GLOWINSKI, R ;
PAN, TW ;
PERIAUX, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 111 (3-4) :283-303
[8]   A NEW FICTITIOUS DOMAIN APPROACH INSPIRED BY THE EXTENDED FINITE ELEMENT METHOD [J].
Haslinger, Jaroslav ;
Renard, Yves .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1474-1499
[9]   Imposing Dirichlet boundary conditions in the extended finite element method [J].
Moes, Nicolas ;
Bechet, Eric ;
Tourbier, Matthieu .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (12) :1641-1669