Quantum transport modeling of defected graphene nanoribbons

被引:9
|
作者
Deretzis, I. [1 ,2 ]
Fiori, G. [4 ]
Iannaccone, G. [4 ]
Piccitto, G. [3 ]
La Magna, A. [1 ]
机构
[1] Ist Microelettr & Microsistemi CNR IMM, I-95121 Catania, Italy
[2] Univ Catania, Scuola Super, I-95123 Catania, Italy
[3] Univ Catania, Dipartimento Fis & Astron, I-95123 Catania, Italy
[4] Dipartimento Ingn Informaz, I-56122 Pisa, Italy
来源
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES | 2012年 / 44卷 / 06期
关键词
GAPS;
D O I
10.1016/j.physe.2010.06.024
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study backscattering phenomena during conduction for graphene nanoribbons of mu m lengths, from single vacancy scatterers up to finite defect concentrations. Using ab initio calibrated Hamiltonian models we highlight the importance of confinement and geometry on the shaping of the local density of states around the defects that can lead to important alterations on the transport process, giving rise to impuritylike conduction gaps in the conductance distribution. Within a statistical analysis of finite defect concentration we show that conductance degradation can become very important. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:981 / 984
页数:4
相关论文
共 50 条
  • [31] Electron transport modeling for junctions of zigzag and armchair graphene nanoribbons (GNRs)
    Naeemi, Azad
    Meindl, James D.
    IEEE ELECTRON DEVICE LETTERS, 2008, 29 (05) : 497 - 499
  • [32] Graphene nanoribbons for quantum electronics
    Haomin Wang
    Hui Shan Wang
    Chuanxu Ma
    Lingxiu Chen
    Chengxin Jiang
    Chen Chen
    Xiaoming Xie
    An-Ping Li
    Xinran Wang
    Nature Reviews Physics, 2021, 3 : 791 - 802
  • [33] Quantum Dots in Graphene Nanoribbons
    Wang, Shiyong
    Kharche, Neerav
    Girao, Eduardo Costa
    Feng, Xinliang
    Muellen, Klaus
    Meunier, Vincent
    Fasel, Roman
    Ruffieux, Pascal
    NANO LETTERS, 2017, 17 (07) : 4277 - 4283
  • [34] Modeling the Charge Transport in Defected Crossed Graphene Nanoribbon Junctions for Nano Devices
    Kumar, Ravinder
    Sawhney, R. S.
    Engles, Derick
    Lamba, Vijay
    2013 INTERNATIONAL CONFERENCE ON ADVANCED NANOMATERIALS AND EMERGING ENGINEERING TECHNOLOGIES (ICANMEET), 2013, : 227 - 230
  • [35] Resilience of thermal conductance in defected graphene, silicene, and boron nitride nanoribbons
    Wirth, Luke J.
    Osborn, Tim H.
    Farajian, Amir A.
    APPLIED PHYSICS LETTERS, 2016, 109 (17)
  • [36] Enhanced metallicity in defected Zigzag graphene nanoribbons: Role of oxygen doping
    Sonal Agrawal
    Gaurav Kaushal
    Anurag Srivastava
    MRS Advances, 2021, 6 : 723 - 728
  • [37] Electronic properties and conductance suppression of defected and doped zigzag graphene nanoribbons
    Cao, C.
    Chen, L. N.
    Zhang, D.
    Huang, W. R.
    Ma, S. S.
    Xu, H.
    SOLID STATE COMMUNICATIONS, 2012, 152 (01) : 45 - 49
  • [38] Enhanced metallicity in defected Zigzag graphene nanoribbons: Role of oxygen doping
    Agrawal, Sonal
    Kaushal, Gaurav
    Srivastava, Anurag
    MRS ADVANCES, 2021, 6 (30) : 723 - 728
  • [39] Electron and Spin Transport in Adiabatic Quantum Pump Based on Armchair Graphene Nanoribbons
    Grichuk, E. S.
    Manykin, E. A.
    TECHNICAL PHYSICS LETTERS, 2011, 37 (11) : 1074 - 1077
  • [40] Time-dependent quantum transport theory and its applications to graphene nanoribbons
    Xie, Hang
    Kwok, Yanho
    Zhang, Yu
    Jiang, Feng
    Zheng, Xiao
    Yan, YiJing
    Chen, GuanHua
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (11): : 2481 - 2494