Quantum transport modeling of defected graphene nanoribbons

被引:9
|
作者
Deretzis, I. [1 ,2 ]
Fiori, G. [4 ]
Iannaccone, G. [4 ]
Piccitto, G. [3 ]
La Magna, A. [1 ]
机构
[1] Ist Microelettr & Microsistemi CNR IMM, I-95121 Catania, Italy
[2] Univ Catania, Scuola Super, I-95123 Catania, Italy
[3] Univ Catania, Dipartimento Fis & Astron, I-95123 Catania, Italy
[4] Dipartimento Ingn Informaz, I-56122 Pisa, Italy
来源
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES | 2012年 / 44卷 / 06期
关键词
GAPS;
D O I
10.1016/j.physe.2010.06.024
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study backscattering phenomena during conduction for graphene nanoribbons of mu m lengths, from single vacancy scatterers up to finite defect concentrations. Using ab initio calibrated Hamiltonian models we highlight the importance of confinement and geometry on the shaping of the local density of states around the defects that can lead to important alterations on the transport process, giving rise to impuritylike conduction gaps in the conductance distribution. Within a statistical analysis of finite defect concentration we show that conductance degradation can become very important. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:981 / 984
页数:4
相关论文
共 50 条
  • [1] The electronic transport properties of defected bilayer sliding armchair graphene nanoribbons
    Mohammadi, Amin
    Haji-Nasiri, Saeed
    PHYSICS LETTERS A, 2018, 382 (15) : 1040 - 1046
  • [2] The spin-dependent transport properties of defected zigzag graphene nanoribbons with graphene nanobubbles
    Ni, Yun
    Li, Jia
    Tao, Wei
    Ding, Hao
    Li, Rui-Xue
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (04) : 2753 - 2761
  • [3] Quantum Transport in Graphene Nanoribbons with Realistic Edges
    Hawkins, Patrick
    Begliarbekov, Milan
    Zivkovic, Marko
    Strauf, Stefan
    Search, Christopher P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (34): : 18382 - 18387
  • [4] Quantum transport properties of zigzag graphene nanoribbons
    Takaki, Hirokazu
    Kobayashi, Nobuhiko
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 43 (03): : 711 - 713
  • [5] Defected graphene nanoribbons under axial compression
    Neek-Amal, M.
    Peeters, F. M.
    APPLIED PHYSICS LETTERS, 2010, 97 (15)
  • [6] Conductance distribution in doped and defected graphene nanoribbons
    La Magna, Antonino
    Deretzis, Ioannis
    Forte, Giuseppe
    Pucci, Renato
    PHYSICAL REVIEW B, 2009, 80 (19)
  • [7] Effects of vacancies on quantum transport of zigzag graphene nanoribbons
    Kumar, Sandeep
    Saklani, Ritik
    Pratap, Surender
    Bhalla, Pankaj
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [8] Quantum transport in zigzag graphene nanoribbons in the presence of vacancies
    Kan, Zhe
    Khatun, Mahfuza
    Cancio, Antonio
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (16)
  • [9] Certain Aspects of Quantum Transport in Zigzag Graphene Nanoribbons
    Pratap, Surender
    Kumar, Sandeep
    Singh, Ravi Pratap
    FRONTIERS IN PHYSICS, 2022, 10
  • [10] Transport in quantum spin Hall phase of graphene nanoribbons
    Qin, G.
    Chen, H.
    Mizuseki, H.
    Kawazoe, Y.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (06)