A mortar edge element method with nearly optimal convergence for three-dimensional Maxwell's equations

被引:12
作者
Hu, Qiya [1 ,2 ]
Shu, Shi [3 ]
Zou, Jun [4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[4] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Maxwell's equations; Nedelec finite elements; domain decomposition; nonmatching grids; generalized interpolation; error estimate;
D O I
10.1090/S0025-5718-08-02057-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with mortar edge element methods for solving three-dimensional Maxwell's equations. A new type of Lagrange multiplier space is introduced to impose the weak continuity of the tangential components of the edge element solutions across the interfaces between neighboring subdomains. The mortar edge element method is shown to have nearly optimal convergence under some natural regularity assumptions when nested triangulations are assumed on the interfaces. A generalized edge element interpolation is introduced which plays a crucial role in establishing the nearly optimal convergence. The theoretically predicted convergence is confirmed by numerical experiments.
引用
收藏
页码:1333 / 1353
页数:21
相关论文
共 38 条
[1]   An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations [J].
Alonso, A ;
Valli, A .
MATHEMATICS OF COMPUTATION, 1999, 68 (226) :607-631
[2]   Some remarks on the characterization of the space of tangential traces of H(rot;Omega) and the construction of an extension operator [J].
Alonso, A ;
Valli, A .
MANUSCRIPTA MATHEMATICA, 1996, 89 (02) :159-178
[3]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[4]  
2-B
[5]  
Arnold DN, 2000, NUMER MATH, V85, P197, DOI 10.1007/s002110000137
[6]   ON A FINITE-ELEMENT METHOD FOR SOLVING THE 3-DIMENSIONAL MAXWELL EQUATIONS [J].
ASSOUS, F ;
DEGOND, P ;
HEINTZE, E ;
RAVIART, PA ;
SEGRE, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 109 (02) :222-237
[7]   The mortar finite element method for 3D Maxwell equations: First results [J].
Ben Belgacem, F ;
Buffa, A ;
Maday, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (03) :880-901
[8]  
BENABDALLAH A, M3AS IN PRESS
[9]  
BENBELGACEM F, 1997, MODEL MATH ANAL NUME, V31, P289
[10]  
Bernardi C., 1994, NONLINEAR PARTIAL DI