The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy

被引:161
作者
Francia, Valentina [1 ,2 ]
Schiffelers, Raymond M. [1 ]
Cullis, Pieter R. [2 ,3 ]
Witzigmann, Dominik [2 ,3 ]
机构
[1] Univ Med Ctr Utrecht, Dept Clin Chem & Haematol, NL-3584 CX Utrecht, Netherlands
[2] Univ British Columbia, Dept Biochem & Mol Biol, Vancouver, BC V6T 1Z3, Canada
[3] Univ British Columbia, NanoMed Innovat Network NMIN, Vancouver, BC V6T 1Z3, Canada
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
DRUG-DELIVERY SYSTEMS; LIPOSOMAL DOXORUBICIN DOXIL; VIVO PROTEIN CORONA; IN-VIVO; MESSENGER-RNA; COMPLEMENT ACTIVATION; PLASMA-PROTEINS; BIOLOGICAL IDENTITY; POLYETHYLENE-GLYCOL; COLLOIDAL STABILITY;
D O I
10.1021/acs.bioconjchem.0c00366
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gene therapy holds great potential for treating almost any disease by gene silencing, protein expression, or gene correction. To efficiently deliver the nucleic acid payload to its target tissue, the genetic material needs to be combined with a delivery platform. Lipid nanoparticles (LNPs) have proven to be excellent delivery vectors for gene therapy and are increasingly entering into routine clinical practice. Over the past two decades, the optimization of LNP formulations for nucleic acid delivery has led to a well-established body of knowledge culminating in the first-ever RNA interference therapeutic using LNP technology, i.e., Onpattro, and many more in clinical development to deliver various nucleic acid payloads. Screening a lipid library in vivo for optimal gene silencing potency in hepatocytes resulted in the identification of the Onpattro formulation. Subsequent studies discovered that the key to Onpattro's liver tropism is its ability to form a specific "biomolecular corona". In fact, apolipoprotein E (ApoE), among other proteins, adsorbed to the LNP surface enables specific hepatocyte targeting. This proof-of-principle example demonstrates the use of the biomolecular corona for targeting specific receptors and cells, thereby opening up the road to rationally designing LNPs. To date, however, only a few studies have explored in detail the corona of LNPs, and how to efficiently modulate the corona remains poorly understood. In this review, we summarize recent discoveries about the biomolecular corona, expanding the knowledge gained with other nanoparticles to LNPs for nucleic acid delivery. In particular, we address how particle stability, biodistribution, and targeting of LNPs can be influenced by the biological environment. Onpattro is used as a case study to describe both the successful development of an LNP formulation for gene therapy and the key influence of the biological environment. Moreover, we outline the techniques available to isolate and analyze the corona of LNPs, and we highlight their advantages and drawbacks. Finally, we discuss possible implications of the biomolecular corona for LNP delivery and we examine the potential of exploiting the corona as a targeting strategy beyond the liver to develop next-generation gene therapies.
引用
收藏
页码:2046 / 2059
页数:14
相关论文
共 149 条
  • [91] EPR: Evidence and fallacy
    Nichols, Joseph W.
    Bae, You Han
    [J]. JOURNAL OF CONTROLLED RELEASE, 2014, 190 : 451 - 464
  • [92] Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles
    Owens, DE
    Peppas, NA
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2006, 307 (01) : 93 - 102
  • [93] Nanoparticles-cell association predicted by protein corona fingerprints
    Palchetti, S.
    Digiacomo, L.
    Pozzi, D.
    Peruzzi, G.
    Micarelli, E.
    Mahmoudi, M.
    Caracciolo, G.
    [J]. NANOSCALE, 2016, 8 (25) : 12755 - 12763
  • [94] Protein Corona Fingerprints of Liposomes: New Opportunities for Targeted Drug Delivery and Early Detection in Pancreatic Cancer
    Palchetti, Sara
    Caputo, Damiano
    Digiacomo, Luca
    Capriotti, Anna Laura
    Coppola, Roberto
    Pozzi, Daniela
    Caracciolo, Giulio
    [J]. PHARMACEUTICS, 2019, 11 (01):
  • [95] mRNA vaccines - a new era in vaccinology
    Pardi, Norbert
    Hogan, Michael J.
    Porter, Frederick W.
    Weissman, Drew
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2018, 17 (04) : 261 - 279
  • [96] Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination
    Pardi, Norbert
    Hogan, Michael J.
    Pelc, Rebecca S.
    Muramatsu, Hiromi
    Andersen, Hanne
    DeMaso, Christina R.
    Dowd, Kimberly A.
    Sutherland, Laura L.
    Scearce, Richard M.
    Parks, Robert
    Wagner, Wendeline
    Granados, Alex
    Greenhouse, Jack
    Walker, Michelle
    Willis, Elinor
    Yu, Jae-Sung
    McGee, Charles E.
    Sempowski, Gregory D.
    Mui, Barbara L.
    Tam, Ying K.
    Huang, Yan-Jang
    Vanlandingham, Dana
    Holmes, Veronica M.
    Balachandran, Harikrishnan
    Sahu, Sujata
    Lifton, Michelle
    Higgs, Stephen
    Hensley, Scott E.
    Madden, Thomas D.
    Hope, Michael J.
    Kariko, Katalin
    Santra, Sampa
    Graham, Barney S.
    Lewis, Mark G.
    Pierson, Theodore C.
    Haynes, Barton F.
    Weissman, Drew
    [J]. NATURE, 2017, 543 (7644) : 248 - +
  • [97] Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge
    Pardi, Norbert
    Secreto, Anthony J.
    Shan, Xiaochuan
    Debonera, Fotini
    Glover, Joshua
    Yi, Yanjie
    Muramatsu, Hiromi
    Ni, Houping
    Mui, Barbara L.
    Tam, Ying K.
    Shaheen, Farida
    Collman, Ronald G.
    Kariko, Katalin
    Danet-Desnoyers, Gwenn A.
    Madden, Thomas D.
    Hope, Michael J.
    Weissman, Drew
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [98] Unbiased Identification of the Liposome Protein Corona using Photoaffinity-based Chemoproteomics
    Pattipeiluhu, Roy
    Crielaard, Stefan
    Klein-Schiphorst, Iris
    Florea, Bogdan, I
    Kros, Alexander
    Campbell, Frederick
    [J]. ACS CENTRAL SCIENCE, 2020, 6 (04) : 535 - 545
  • [99] A Direct Comparison of in Vitro and in Vivo Nucleic Acid Delivery Mediated by Hundreds of Nanoparticles Reveals a Weak Correlation
    Paunovska, Kalina
    Sago, Cory D.
    Monaco, Christopher M.
    Hudson, William H.
    Castro, Marielena Gamboa
    Rudoltz, Tobi G.
    Kalathoor, Sujay
    Vanover, Daryll A.
    Santangelo, Philip J.
    Ahmed, Rafi
    Bryksin, Anton V.
    Dahlman, James E.
    [J]. NANO LETTERS, 2018, 18 (03) : 2148 - 2157
  • [100] Experimental separation steps influence the protein content of corona around mesoporous silica nanoparticles
    Pisani, C.
    Gaillard, J. C.
    Dorandeu, C.
    Charnay, C.
    Guari, Y.
    Chopineau, J.
    Devoisselle, J. M.
    Armengaudc, J.
    Prat, O.
    [J]. NANOSCALE, 2017, 9 (18) : 5769 - 5772