MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation

被引:64
|
作者
Jain, Arjun [1 ]
Tompson, Jonathan [1 ]
LeCun, Yann [1 ]
Bregler, Christoph [1 ]
机构
[1] NYU, New York, NY 10012 USA
来源
COMPUTER VISION - ACCV 2014, PT II | 2015年 / 9004卷
关键词
D O I
10.1007/978-3-319-16808-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a novel and efficient method for articulated human pose estimation in videos using a convolutional network architecture, which incorporates both color and motion features. We propose a new human body pose dataset, FLIC-motion (This dataset can be downloaded from http://cs.nyu.edu/similar to ajain/accv2014/.), that extends the FLIC dataset [1] with additional motion features. We apply our architecture to this dataset and report significantly better performance than current state-of-the-art pose detection systems.
引用
收藏
页码:302 / 315
页数:14
相关论文
共 50 条
  • [1] Human Pose Estimation using Deep Structure Guided Learning
    Ai, Baole
    Zhou, Yu
    Yu, Yao
    Du, Sidan
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 1224 - 1231
  • [2] Human Pose Estimation Using Deep Learning: A Systematic Literature Review
    Samkari, Esraa
    Arif, Muhammad
    Alghamdi, Manal
    Al Ghamdi, Mohammed A.
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (04): : 1612 - 1659
  • [3] Human pose, hand and mesh estimation using deep learning: a survey
    Toshpulatov, Mukhiddin
    Lee, Wookey
    Lee, Suan
    Roudsari, Arousha Haghighian
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (06): : 7616 - 7654
  • [4] Human pose, hand and mesh estimation using deep learning: a survey
    Mukhiddin Toshpulatov
    Wookey Lee
    Suan Lee
    Arousha Haghighian Roudsari
    The Journal of Supercomputing, 2022, 78 : 7616 - 7654
  • [5] Human pose estimation using motion exemplars
    Fathi, Alireza
    Mori, Greg
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 1917 - 1924
  • [6] Personalized motion kernel learning for human pose estimation
    Wang, Xue
    Feng, Runyang
    Chen, Haoming
    Zimmermann, Roger
    Liu, Zhenguang
    Liu, Hengchang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) : 5859 - 5879
  • [7] Real-time pose estimation and motion tracking for motion performance using deep learning models
    Liu, Long
    Dai, Yuxin
    Liu, Zhihao
    JOURNAL OF INTELLIGENT SYSTEMS, 2024, 33 (01)
  • [8] MODEEP: a motion-based object detection and pose estimation method for airborne FLIR sequences
    Alexander Strehl
    J.K. Aggarwal
    Machine Vision and Applications, 2000, 11 : 267 - 276
  • [9] Human Pose Estimation Based on ISAR and Deep Learning
    Javadi, S. Hamed
    Bourdoux, Andre
    Deligiannis, Nikos
    Sahli, Hichem
    IEEE SENSORS JOURNAL, 2024, 24 (17) : 28324 - 28337
  • [10] Deep Reinforcement Learning for Active Human Pose Estimation
    Gartner, Erik
    Pirinen, Aleksis
    Sminchisescu, Cristian
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10835 - 10844