Large time behaviour and synchronization of complex networks of reactiondiffusion systems of FitzHughNagumo type

被引:18
作者
Ambrosio, B. [1 ]
Aziz-Alaoui, M. A. [1 ]
Phan, V. L. E. [2 ]
机构
[1] Normandie Univ, FR CNRS 3335, UNIHAVRE, LMAH,ISCN, F-76600 Le Havre, France
[2] An Giang Univ, Long Xuyen City, An Giang, Vietnam
关键词
complex networks; synchronization; reactiondiffusion systems; FitzHughNagumo; FUNCTIONAL CONNECTIVITY; DYNAMIC PATTERN; COMMUNICATION;
D O I
10.1093/imamat/hxy064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We focus on the long-time behaviour of complex networks of reaction-diffusion (RD) systems. In a previous work, we have proved the existence of the global attractor and the L-infinity-bound for these networks. Here, we discuss the synchronization phenomenon and establish the existence of a coupling strength threshold value that ensures this synchronization. Then, we apply these results to some particular networks with different structures (i.e. different topologies) and perform numerical simulations. We found out theoretical and numerical heuristic laws for the minimal coupling strength needed for synchronization with respect to the number of nodes and the network topology. We also discuss the link between spatial heterogeneity and synchronization. Our main conclusion is that some of widespread heuristic laws known for synchronization of ordinary differential equations remain valid for networks of RD systems, i.e. networks in which each node has its own spatial heterogeneity.
引用
收藏
页码:416 / 443
页数:28
相关论文
共 59 条
[1]   GLOBAL ATTRACTOR OF COMPLEX NETWORKS OF REACTION-DIFFUSION SYSTEMS OF FITZHUGH-NAGUMO TYPE [J].
Ambrosio, B. ;
Aziz-Alaoui, M. A. ;
Phan, V. L. E. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09) :3787-3797
[2]   Basin of Attraction of Solutions with Pattern Formation in Slow-Fast Reaction-Diffusion Systems [J].
Ambrosio, B. ;
Aziz-Alaoui, M. A. .
ACTA BIOTHEORETICA, 2016, 64 (04) :311-325
[3]  
Ambrosio Benjamin, 2013, ESAIM Proceedings, V39, P15, DOI 10.1051/proc/201339003
[4]   Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo type [J].
Ambrosio, B. ;
Aziz-Alaoui, M. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (05) :934-943
[5]   Propagation of bursting oscillations [J].
Ambrosio, Benjamin ;
Francoise, Jean-Pierre .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1908) :4863-4875
[6]   Increases in Functional Connectivity between Prefrontal Cortex and Striatum during Category Learning [J].
Antzoulatos, Evan G. ;
Miller, Earl K. .
NEURON, 2014, 83 (01) :216-225
[7]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[8]   The theory of pattern formation on directed networks [J].
Asllani, Malbor ;
Challenger, Joseph D. ;
Pavone, Francesco Saverio ;
Sacconi, Leonardo ;
Fanelli, Duccio .
NATURE COMMUNICATIONS, 2014, 5
[9]   The linear noise approximation for reaction-diffusion systems on networks [J].
Asllani, Malbor ;
Biancalani, Tommaso ;
Fanelli, Duccio ;
McKane, Alan J. .
EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (11)
[10]   Stochastic Turing patterns on a network [J].
Asslani, Malbor ;
Di Patti, Francesca ;
Fanelli, Duccio .
PHYSICAL REVIEW E, 2012, 86 (04)