A transcendental Julia set of dimension 1

被引:14
作者
Bishop, Christopher J. [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
HAUSDORFF DIMENSION; BOUNDARY; MODELS; HAIRS;
D O I
10.1007/s00222-017-0770-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a non-polynomial entire function whose Julia set has finite 1-dimensional spherical measure, and hence Hausdorff dimension 1. In 1975, Baker proved the dimension of such a Julia set must be at least 1, but whether this minimum could be attained has remained open until now. Our example also has packing dimension 1, and is the first transcendental Julia set known to have packing dimension strictly less than 2. It is also the first example with a multiply connected wandering domain where the dynamics can be completely described.
引用
收藏
页码:407 / 460
页数:54
相关论文
共 51 条
[1]  
Agol I., 2004, ARXIVMATH0405568MATH
[2]  
[Anonymous], 2017, CAMBRIDGE STUDIES AD
[3]   Siegel disks with smooth boundaries [J].
Avila, A ;
Buff, X ;
Chéritat, A .
ACTA MATHEMATICA, 2004, 193 (01) :1-30
[4]  
Avila A., 2015, ARXIV150402986MATHDS
[5]  
Baker I. N., 1976, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V22, P173
[6]  
Baker I.N., 1985, Ergod. Th. Dynam. Sys., V5, P163
[7]  
Baker I.N., 1975, Ann. Acad. Sci. Fenn. A I Math., V1, P277
[8]   Hausdorff dimension of hairs and ends for entire maps of finite order [J].
Baranski, Krzysztof .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 :719-737
[9]  
Baumgartner M., 2015, THESIS
[10]   On semiconjugation of entire functions [J].
Bergweiler, W ;
Hinkkanen, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 126 :565-574