Classifying the hierarchy of nonlinear-Schrodinger-equation rogue-wave solutions

被引:157
|
作者
Kedziora, David J. [1 ]
Ankiewicz, Adrian [1 ]
Akhmediev, Nail [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Opt Sci Grp, Canberra, ACT 0200, Australia
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 01期
基金
澳大利亚研究理事会;
关键词
NLS EQUATION; SOLITON; FIBER;
D O I
10.1103/PhysRevE.88.013207
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a systematic classification for higher-order rogue-wave solutions of the nonlinear Schrodinger equation, constructed as the nonlinear superposition of first-order breathers via the recursive Darboux transformation scheme. This hierarchy is subdivided into structures that exhibit varying degrees of radial symmetry, all arising from independent degrees of freedom associated with physical translations of component breathers. We reveal the general rules required to produce these fundamental patterns. Consequently, we are able to extrapolate the general shape for rogue-wave solutions beyond order 6, at which point accuracy limitations due to current standards of numerical generation become non-negligible. Furthermore, we indicate how a large set of irregular rogue-wave solutions can be produced by hybridizing these fundamental structures.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Rogue-wave solutions of a three-component coupled nonlinear Schrodinger equation
    Zhao, Li-Chen
    Liu, Jie
    PHYSICAL REVIEW E, 2013, 87 (01):
  • [2] Rogue wave solutions for the infinite integrable nonlinear Schrodinger equation hierarchy
    Ankiewicz, A.
    Akhmediev, N.
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [3] ROGUE-WAVE SOLUTIONS OF THE ZAKHAROV EQUATION
    Rao, Jiguang
    Wang, Lihong
    Liu, Wei
    He, Jingsong
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 193 (03) : 1783 - 1800
  • [4] Rogue-wave solutions of the Zakharov equation
    Jiguang Rao
    Lihong Wang
    Wei Liu
    Jingsong He
    Theoretical and Mathematical Physics, 2017, 193 : 1783 - 1800
  • [5] Rogue-wave solutions of a higher-order nonlinear Schrodinger equation for inhomogeneous Heisenberg ferromagnetic system
    Jia, H. X.
    Ma, J. Y.
    Liu, Y. J.
    Liu, X. F.
    INDIAN JOURNAL OF PHYSICS, 2015, 89 (03) : 281 - 287
  • [6] Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation
    Wang, L. H.
    Porsezian, K.
    He, J. S.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [7] Rogue wave solutions of the nonlinear Schrodinger equation with variable coefficients
    Liu, Changfu
    Li, Yan Yan
    Gao, Meiping
    Wang, Zeping
    Dai, Zhengde
    Wang, Chuanjian
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (06): : 1063 - 1072
  • [8] Rogue-Wave Interaction of a Nonlinear Schrodinger Model for the Alpha Helical Protein
    Jia, Hui-Xian
    Liu, Yu-Jun
    Wang, Ya-Ning
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (01): : 27 - 32
  • [9] Rogue wave solutions to the generalized nonlinear Schrodinger equation with variable coefficients
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Huang, Tingwen
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [10] Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions
    Guo, Boling
    Ling, Liming
    Liu, Q. P.
    PHYSICAL REVIEW E, 2012, 85 (02):