Classifying the hierarchy of nonlinear-Schrodinger-equation rogue-wave solutions

被引:162
作者
Kedziora, David J. [1 ]
Ankiewicz, Adrian [1 ]
Akhmediev, Nail [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Opt Sci Grp, Canberra, ACT 0200, Australia
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 01期
基金
澳大利亚研究理事会;
关键词
NLS EQUATION; SOLITON; FIBER;
D O I
10.1103/PhysRevE.88.013207
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a systematic classification for higher-order rogue-wave solutions of the nonlinear Schrodinger equation, constructed as the nonlinear superposition of first-order breathers via the recursive Darboux transformation scheme. This hierarchy is subdivided into structures that exhibit varying degrees of radial symmetry, all arising from independent degrees of freedom associated with physical translations of component breathers. We reveal the general rules required to produce these fundamental patterns. Consequently, we are able to extrapolate the general shape for rogue-wave solutions beyond order 6, at which point accuracy limitations due to current standards of numerical generation become non-negligible. Furthermore, we indicate how a large set of irregular rogue-wave solutions can be produced by hybridizing these fundamental structures.
引用
收藏
页数:12
相关论文
共 28 条
[1]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[2]  
Akhmediev N., 1997, SOLITONS NONLINEAR P, V5
[3]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[4]   EXTREMELY HIGH DEGREE OF N-SOLITON PULSE-COMPRESSION IN AN OPTICAL FIBER [J].
AKHMEDIEV, NN ;
MITZKEVICH, NV .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (03) :849-857
[5]  
AKHMEDIEV NN, 1985, ZH EKSP TEOR FIZ+, V89, P1542
[6]   Rogue wave triplets [J].
Ankiewicz, Adrian ;
Kedziora, David J. ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2011, 375 (28-29) :2782-2785
[7]   Rogue waves and rational solutions of the Hirota equation [J].
Ankiewicz, Adrian ;
Soto-Crespo, J. M. ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2010, 81 (04)
[8]   Persistence of rogue waves in extended nonlinear Schrodinger equations: Integrable Sasa-Satsuma case [J].
Bandelow, U. ;
Akhmediev, N. .
PHYSICS LETTERS A, 2012, 376 (18) :1558-1561
[9]   Homoclinic chaos increases the likelihood of rogue wave formation [J].
Calini, A ;
Schober, CM .
PHYSICS LETTERS A, 2002, 298 (5-6) :335-349
[10]   WHAT KIND OF A WAVE IS HOKUSAI'S GREAT WAVE OFF KANAGAWA? [J].
Cartwright, Julyan H. E. ;
Nakamura, Hisami .
NOTES AND RECORDS OF THE ROYAL SOCIETY, 2009, 63 (02) :119-135