This study introduces a novel design for low-cost MEMS devices, which exploit the benefits of resonant operation and maintain stable performance. Resonant devices provide high sensitivity and convenient signal processing. The drawback of the method is the sensitivity to undesired environmental effects and aging. The environment induced degradation processes and the long-term stability of thin film resonators were investigated previously. The two major reliability problems were stiffening effect and degrading shock response, both affecting the mechanical resonance frequency. Based on these results, new, low-cost pressure sensors and accelerometers were designed and fabricated. The structures are based on locally reinforced silicon nitride membranes, and double-clamped 3-D silicon nitride bridges as sensing elements. The double mechanical structure allows separate optimization of the membrane and the bridges for the workload and for the most efficient driving and sensing. The 3-D bridges work as mechanical amplifiers, resulting in higher detection efficiency. The reliability tests indicated, that a low-cost atmospheric packaging is efficient, thus the bridges do not require vacuum encapsulation by multiple-wafer processing. External mechanical and thermal excitation combined with piezoresistive and optical detection methods are implemented in the different sensors. Differential detection using reference resonators allow compensation for thermal, environment- and aging-induced stresses.