SEACOIN2.0:an interactive mining and visualization tool for information retrieval, summarization and knowledge discovery

被引:0
作者
Lee, Eva K. [1 ]
Uppal, Karan [1 ]
Er, Siawpeng [1 ]
机构
[1] Georgia Inst Technol, Ctr Operat Res Med & Healthcare, NSF I UCRC Ctr Hlth Org Transformat, Atlanta, GA 30332 USA
来源
2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2019年
基金
美国国家科学基金会;
关键词
Information retrieval; visualization; data mining; knowledge discovery; hypothesis generation; CENTRALITY; GENES;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The rapidly increasing size of biomedical databases such as Medline requires the use of intelligent data mining methods for information extraction and summarization. Existing biomedical text-mining tools have limited capabilities for incorporating citation information during document ranking and for inferring topological and network relationships between biomedical terms. Often too much is returned during summarization leading to information overload. Furthermore, literature-based discoveries could be hard to interpret if the network is too complex. SEACOIN2.0 can incorporate citation information during document ranking and uses a unique association rule mining algorithm to generate multi-level k-ary trees. The multi-level trees facilitate efficient information retrieval, visual data exploration, summarization, and hypothesis generation. The system presents graphical summarization via multiple dynamic visualization panels and an interactive word cloud. LexRank algorithm is used to identify salient sentences in top abstracts related to the query. An average F-measure of 94% was achieved for document retrieval, and an average precision of 88% was obtained for identification of top co-occurrence terms. SEACOIN2.0 was also used to replicate previously published findings using the literature-based discovery and EMR-based PheWAS approaches. We present herein SEACOIN2.0 (https://newton.isye.gatech.edu/SEACOIN2/), an interactive visual mining tool for improved information retrieval, automated multi-level summarization of Medline abstracts, and literature-based discovery. SEACOIN2.0 addresses the problem of "information overload" and allows clinicians and biomedical researchers to meet their information needs.
引用
收藏
页码:1518 / 1525
页数:8
相关论文
共 43 条
[1]   Report on EU-USA Workshop: How Systems Biology Can Advance Cancer Research (27 October 2008) [J].
Aebersold, Ruedi ;
Auffray, Charles ;
Baney, Erin ;
Barillot, Emmanuel ;
Brazma, Alvis ;
Brett, Catherine ;
Brunak, Soren ;
Butte, Atul ;
Califano, Andrea ;
Celis, Julio ;
Cufer, Tanja ;
Ferrell, James ;
Galas, David ;
Gallahan, Daniel ;
Gatenby, Robert ;
Goldbeter, Albert ;
Hace, Natasa ;
Henney, Adriano ;
Hood, Lee ;
Iyengar, Ravi ;
Jackson, Vicky ;
Kallioniemi, Ollie ;
Klingmueller, Ursula ;
Kolar, Patrik ;
Kolch, Walter ;
Kyriakopoulou, Christina ;
Laplace, Frank ;
Lehrach, Hans ;
Marcus, Frederick ;
Matrisian, Lynn ;
Nolan, Garry ;
Pelkmans, Lucas ;
Potti, Anil ;
Sander, Chris ;
Seljak, Marija ;
Singer, Dinah ;
Sorger, Peter ;
Stunnenberg, Hendrik ;
Superti-Furga, Giulio ;
Uhlen, Mathias ;
Vidal, Marc ;
Weinstein, John ;
Wigle, Dennis ;
Williams, Michael ;
Wolkenhauer, Olaf ;
Zhivotousky, Boris ;
Zinovyev, Andrei ;
Zupan, Blaz .
MOLECULAR ONCOLOGY, 2009, 3 (01) :9-17
[2]   Literature mining, ontologies and information visualization for drug repurposing [J].
Andronis, Christos ;
Sharma, Anuj ;
Virvilis, Vassilis ;
Deftereos, Spyros ;
Persidis, Aris .
BRIEFINGS IN BIOINFORMATICS, 2011, 12 (04) :357-368
[3]  
[Anonymous], 2013, DAT RES NAT CTR BIOT, DOI DOI 10.1093/NAR/GKS1189
[4]  
[Anonymous], 1998, WORDNET ELECT LEXICA, DOI DOI 10.7551/MITPRESS/7287.001.0001
[5]  
Arighi C.N., 2014, Database
[6]  
Chen Helen H. W., 2010, Metal-Based Drugs, P430939, DOI 10.1155/2010/430939
[7]   Chapter 16: Text Mining for Translational Bioinformatics [J].
Cohen, K. Bretonnel ;
Hunter, Lawrence E. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (04)
[8]   Technical milestone - Medical subject headings used to search the biomedical literature [J].
Coletti, MH ;
Bleich, HL .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2001, 8 (04) :317-323
[9]   Delivering Clinical Evidence Where It's Needed Building an Information System Worthy of the Profession [J].
Davidoff, Frank ;
Miglus, Jennifer .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2011, 305 (18) :1906-1907
[10]   Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical-gene-disease networks [J].
Davis, Allan Peter ;
Murphy, Cynthia G. ;
Saraceni-Richards, Cynthia A. ;
Rosenstein, Michael C. ;
Wiegers, Thomas C. ;
Mattingly, Carolyn J. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D786-D792