Sharp asymptotics for isotonic regression

被引:26
作者
Durot, C [1 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
关键词
non-parametric regression; monotonicity; isotonic estimator; drifted Brownian motion; location process;
D O I
10.1007/s004400100171
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The asymptotic behavior of the isotonic estimator of a monotone regression function (that is the least-squares estimator under monotonicity restriction) is investigated. In particular it is proved that the L-1-distance between the isotonic estimator and the true function is of magnitude n(-1/3). Moreover, it is proved that a centered version of this L-1-distance converges at the n(1/2) rate to a Gaussian variable with fixed variance.
引用
收藏
页码:222 / 240
页数:19
相关论文
共 19 条
[1]  
Barlow R. E., 1972, STAT INFERENCE ORDER
[2]  
Billingsley P., 1995, PROBABILITY MEASURES
[3]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[4]   ON THE ESTIMATION OF PARAMETERS RESTRICTED BY INEQUALITIES [J].
BRUNK, HD .
ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (02) :437-454
[5]  
DUROT C, 1998, IN PRESS ESAIM
[6]  
GRENANDER U., 1956, Skand. Aktuarietidskr., V39, P125
[7]  
Groeneboom P, 1999, ANN STAT, V27, P1316
[8]   BROWNIAN-MOTION WITH A PARABOLIC DRIFT AND AIRY FUNCTIONS [J].
GROENEBOOM, P .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 81 (01) :79-109
[9]  
GROENEBOOM P., 1985, P BERKELEY C HONOR J, VII, P539
[10]   CUBE ROOT ASYMPTOTICS [J].
KIM, JY ;
POLLARD, D .
ANNALS OF STATISTICS, 1990, 18 (01) :191-219