Synthesized biocompatible and conductive ink for 3D printing of flexible electronics

被引:37
|
作者
Farizhandi, Amir Abbas Kazemzadeh [1 ]
Khalajabadi, Shahrouz Zamani [1 ]
Krishnadoss, Vaishali [1 ]
Noshadi, Iman [1 ]
机构
[1] Rowan Univ, Sch Chem Engn, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA
关键词
Bioink; 3D printing; Conductive biomaterial; Flexible biopolymer; Metal-polymer biocomposites; POLYMERS; SCAFFOLDS; HYDROGEL; BIOINK; BIOMATERIALS; ALGINATE; CELLS;
D O I
10.1016/j.jmbbm.2020.103960
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Three-dimensional (3D) printing is an efficient technique for the fabrication of electronic devices. It also enables the use conductive of biomaterials in various applications, such as implants and flexible devices. Designing a new bioink is extremely challenging. For bioelectronics devices, bioink materials should be printable, flexible, conductive, harmless to cells, and sufficiently strong to maintain their shape when immersed in nutrients or under pressure. Over the past few years, several flexible conductive bioinks have been developed that are based on composite pastes containing a biopolymer and conductive micro- and nanoscale materials in the form of metallic particles, conducting polymers, or a mixture of them. Herein, we report a new strategy for the fabrication of a bioink for a commercial 3D printer with the desired conductivity, mechanical properties, and biocompatibility, using a poly(glycerol-co-sebacate) (PGS)-based polymer and zinc. The PGS-based polymer and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (as a photoinitiator) were added to the zinc, and then, the prepared bioink was polymerized during 3D printing under visible light. According to a microstructural investigation using scanning electron microscopy, the zinc particles were homogeneously distributed in the PGSA matrix. The conductivity of bioink increases with chemical sintering and with an increase in the amount of zinc particles. Based on rheology tests, the appropriate printable composition is 60% zinc and 40% PGS-based polymer. This bioink exhibited remarkable mechanical and adhesive properties in comparison with the PGS-based polymer without zinc, according to tensile, compression, lap shear, wound closure, and burst pressure modules. In vitro and in vivo results indicated that the bioink was not toxic to the cells or the animal over a period of culturing.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Recent advances in the 3D printing of electrically conductive hydrogels for flexible electronics
    Yang, Ruxue
    Chen, Xiyue
    Zheng, Yi
    Chen, Kaiqi
    Zeng, Weisheng
    Wu, Xin
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (14) : 5380 - 5399
  • [2] 3D printing of flexible batteries for wearable electronics
    Yang, Hao
    Fang, Haiqiu
    Wang, Wanli
    Zhang, Dongqing
    Zhu, Jiexin
    Chen, Kuo
    Sun, Yi
    Wang, Peixiang
    Zhou, Qiang
    Qi, Chao
    Wang, Bin
    Wu, Mingbo
    JOURNAL OF POWER SOURCES, 2024, 602
  • [3] A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics
    Shin, Su Ryon
    Farzad, Raziyeh
    Tamayol, Ali
    Manoharan, Vijayan
    Mostafalu, Pooria
    Zhang, Yu Shrike
    Akbari, Mohsen
    Jung, Sung Mi
    Kim, Duckjin
    Comotto, Mattia
    Annabi, Nasim
    Al-Hazmi, Faten Ebrahim
    Dokmeci, Mehmet R.
    Khademhosseini, Ali
    ADVANCED MATERIALS, 2016, 28 (17) : 3280 - 3289
  • [4] Rheological analysis of bio-ink for 3D bio-printing processes
    Habib, Md Ahasan
    Khoda, Bashir
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 76 : 708 - 718
  • [5] 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System
    Zhou, Ying
    Yue, Zhilian
    Chen, Zhi
    Wallace, Gordon
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (24)
  • [6] BIOCOMPATIBLE POLYMERS FOR 3D PRINTING
    Lupuleasa, Dumitru
    Draganescu, Doina
    Hincu, Lucian
    Tudosa, Constantin Petre
    Cioaca, Daniela
    FARMACIA, 2018, 66 (05) : 737 - 746
  • [7] Development of clay based novel hybrid bio-ink for 3D bio-printing process
    Habib, Ahasan
    Khoda, Bashir
    JOURNAL OF MANUFACTURING PROCESSES, 2019, 38 : 76 - 87
  • [8] 3D printing of Biocompatible PM-Materials
    Dourandish, M.
    Godlinski, D.
    Simchi, A.
    PROGRESS IN POWDER METALLURGY, PTS 1 AND 2, 2007, 534-536 : 453 - +
  • [9] 3D Printing of Conductive Hydrogel-Elastomer Hybrids for Stretchable Electronics
    Zhu, Heng
    Hu, Xiaocheng
    Liu, Binhong
    Chen, Zhe
    Qu, Shaoxing
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (49) : 59243 - 59251
  • [10] Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing
    Vadillo, Julen
    Larraza, Izaskun
    Calvo-Correas, Tamara
    Gabilondo, Nagore
    Derail, Christophe
    Eceiza, Arantxa
    MATERIALS, 2021, 14 (12)