MAXIMA OF THE Q-INDEX: GRAPHS WITH BOUNDED CLIQUE NUMBER

被引:0
作者
Maia De Abreu, Nair Maria [1 ]
Nikiforov, Vladimir [2 ]
机构
[1] Univ Fed Rio de Janeiro, BR-21941 Rio De Janeiro, Brazil
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
Signless Laplacian; Spectral radius; Clique; Clique number; Eigenvalue bounds;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives a tight upper bound on the spectral radius of the signless Laplacian of graphs of given order and clique number. More precisely, let G be a graph of order n, let A be its adjacency matrix, and let D be the diagonal matrix of the row-sums of A. If G has clique number omega, then the largest eigenvalue q (G) of the matrix Q = A + D satisfies q (G) <= 2 (1 - 1/omega) n. If G is a complete regular omega-partite graph, then equality holds in the above inequality.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 10 条
  • [1] [Anonymous], RES REPORT
  • [2] [Anonymous], 2009, GRAPH THEORY NOTES N
  • [3] [Anonymous], 2013, Modern graph theory
  • [4] [Anonymous], 1985, Linear Multilinear Algebra, DOI [DOI 10.1080/03081088508817681, 10.1080/03081088508817681]
  • [5] [蔡改香 CAI Gai-xiang], 2009, [应用数学, Mathematics Applicata], V22, P161
  • [6] Cvetkovic D., 1972, Publ. Inst. Math.(Beograd), V14, P25
  • [7] De Abreu NMM, 2012, ELECTRON J LINEAR AL, V23, P782
  • [8] Sharp bounds for the signless Laplacian spectral radius in terms of clique number
    He, Bian
    Jin, Ya-Lei
    Zhang, Xiao-Dong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 3851 - 3861
  • [9] SPECTRAL BOUNDS FOR THE CLIQUE AND INDEPENDENCE NUMBERS OF GRAPHS
    WILF, HS
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 40 (01) : 113 - 117
  • [10] Signless Laplacian spectral radii of graphs with given chromatic number
    Yu, Guanglong
    Wu, Yarong
    Shu, Jinlong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (08) : 1813 - 1822